Skip to main content

Advertisement

Log in

Harmonic Distortion Assessment in the Single-Phase Photovoltaic (PV) System Based on SPWM Technique

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The solar electric (photovoltaic or PV) system generates the electrical power at the day time. The current and voltage distortions are caused by the nonlinearities present in PV system which lead to the power issues. In the proposed PV system, the Insulated Gate Bipolar Junction Transistor switches the boost converter and multilevel inverter to regulate the output power of the system. In case of PV system, boost converter output is fed to an inverter to transform power from direct current to alternating current thereby inducing harmonic. The harmonic causes unnecessary overheating of the equipment, nuisance tripping of breakers and power factor reduction. The proportional integral derivative controller along with sinusoidal pulse width modulation is implemented in the proposed single-phase PV system to reduce the harmonic distortion and to improve the system performance. In the scope of this paper, the performance analysis of the PV system is done as far as accuracy, robustness and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Villalva, M.G.; Gazoli, J.R.; Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009)

    Article  Google Scholar 

  2. Samrat, N.H.; Ahmad, N.; Choudhury, I.A.; Taha, Z.: Technical study of a standalone photovoltaic–wind energy based hybrid power supply systems for island electrification in Malaysia. PLoS ONE 10(6), 1–35 (2015)

    Article  Google Scholar 

  3. Zitouni, N.; et al.: Modelling and non linear control of a photovoltaic system with storage batteries: a bond graph approach. IJCSNS Int J. Comput. Sci. Netw. Secur. 11(6), 105–114 (2011)

    Google Scholar 

  4. Priewasser, R.; Agostinelli, M.; Unterrieder, C.; Marsili, S.; Huemer, M.: Modeling, control, and implementation of DC–DC converters for variable frequency operation. IEEE Trans. Power Electron. 29(1), 287–301 (2013)

    Article  Google Scholar 

  5. Bryant, B.; Kazimierczuk, M.K.: Voltage-loop power-stage transfer functions with MOSFET delay for boost PWM converter operating in CCM. IEEE Trans. Industr. Electron. 54(1), 347–353 (2007)

    Article  Google Scholar 

  6. Xu, J.; Qian, Q.; Zhang, B.; Xie, S.: Harmonics and stability analysis of single-phase grid-connected inverters in distributed power generation systems considering phase-locked loop impact. IEEE Trans. Sustain. Energy 10(3), 1470–1480 (2019)

    Article  Google Scholar 

  7. Sira-Ramirez, H.; Ilic-Spong, M.: Exact linearization in switched-mode DC-to-DC power converters. Int. J. Control 50(2), 511–524 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alkrunz, M.; Yazıcı, I.: Design of discrete time controllers for the DC–DC boost converter. Sakarya Univ. J. Sci. 20(1), 75–82 (2016)

    Article  Google Scholar 

  9. Fathah, A.: Design of a Boost Converter. PhD Dissertation (2013)

  10. Arora, S.; Balsara, P.; Bhatia, D.: Input–output linearization of a boost converter with mixed load (constant voltage load and constant power load). IEEE Trans. Power Electron. 34(1), 815–825 (2018)

    Article  Google Scholar 

  11. Tseng, S.-Y.; Wang, H.-Y.: A photovoltaic power system using a high step-up converter for DC load applications. Energies 6(2), 1068–1100 (2013)

    Article  Google Scholar 

  12. Aung, T.; Naing, T.L.: Modeling and simulation of DC-DC boost converter-inverter system with open-source software Scilab/Xcos. Softw. Eng. 6(2), 27–37 (2018)

    Google Scholar 

  13. Viswanatha, V.; Reddy, V.S.; R, : A complete mathematical modeling, simulation and computational implementation of boost converter via MATLAB/Simulink. Int. J. Pure Appl. Math. 114(10), 407–419 (2017)

    Google Scholar 

  14. Furukawa, Y.; Nakamura, H.; Eto, H.; Colak, I.; Kurokawa, F.: Quick response wide input range dc–dc converter for renewable energy system. Int. J. Renew. Energy Res. (IJRER) 7(4), 1979–1988 (2017)

    Google Scholar 

  15. Abdessamad, B.; Salah-Ddine, K.; Mohamed, C.E.: Design and modeling of DC/DC boost converter for mobile device applications. Int. J. Sci. Technol. 2(5), 394–401 (2013)

    Google Scholar 

  16. Sharma, P.; Kumar, P.; Sharma, H.; Pal, N.: Closed loop controlled boost converter using a pid controller for solar wind power system installation. Int. J. Eng. Technol. 7(1), 255–260 (2018)

    Article  Google Scholar 

  17. Haque, A.: Maximum power point tracking (MPPT) scheme for solar photovoltaic system. Energy Technol. Policy 1(1), 115–122 (2014)

    Article  Google Scholar 

  18. Selvakumar, S.; Madhusmita, M.; Koodalsamy, C.; Simon, S.P.; Sood, Y.R.: High-speed maximum power point tracking module for PV systems. IEEE Trans. Ind. Electron. 66(2), 1119–1129 (2019)

    Article  Google Scholar 

  19. Armghan, H.; Yang, M.; Armghan, A.; Ali, N.; Wang, M.Q.; Ahmad, I.: Design of integral terminal sliding mode controller for the hybrid AC/DC microgrids involving renewables and energy storage systems. Int. J. Electr. Power Energy Syst. 119, 1–15 (2020)

    Article  Google Scholar 

  20. Cristaldi, L.; Faifer, M.; Rossi, M.; Toscani, S.: An improved model-based maximum power point tracker for photovoltaic panels. IEEE Trans. Instrum. Meas. 63(1), 63–71 (2014)

    Article  Google Scholar 

  21. Jeyabalan, C.: Design of an input and output linearization based enhanced maximum power point. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 6(1), 84–98 (2017)

    Google Scholar 

  22. Rawat, R.; Chandel, S.S.: Review of maximum-power-point tracking techniques for solar-photovoltaic systems. Energy Technology 1(8), 438–448 (2013)

    Article  Google Scholar 

  23. Martins, F.G.: Tuning PID controllers using the ITAE criterion. Int. J. Eng. Educ. 21(5), 867–876 (2005)

    Google Scholar 

  24. Zellouma, L.; Rabhi, B.; Krama, A.; Benaissa, A.; Benkhoris, M.F.: Simulation and real time implementation of three phase four wire shunt active power filter based on sliding mode controller. Revue Roumaine Sci. Tech. Ser. Electrotech. Energ. 63(1), 77–82 (2018)

    Google Scholar 

  25. Gounden, N.A.; Ann Peter, S.; Nallandula, H.; Krithiga, S.: Fuzzy logic controller with MPPT using line-commutated inverter for three-phase grid-connected photovoltaic systems. Renew. Energy 34, 909–915 (2009)

    Article  Google Scholar 

  26. Ghani, Z.A.M.M.H.; Mahammad, M.S.H.L.; Hannan, A.: A fuzzy-rule-Based PV inverter controller to enhance the quality of solar power supply: experimental test and validation. Electronics 8, 1–21 (2019)

    Google Scholar 

  27. Alepuz, S.; Busquets-Monge, S.; Bordonau, J.; Gago, J.; Gonzalez, D.; Balcells, J.: Interfacing renewable energy sources to the utility grid using a three-level inverter. IEEE Trans. Industr. Electron. 53, 1504–1511 (2006)

    Article  Google Scholar 

  28. Sreedevi, M.; Paul, P.J.: ‘Fuzzy PI controller based grid-connected PV system. Int. J. Soft Comput. 6, 11–15 (2011)

    Article  Google Scholar 

  29. Selvaraj, J.; Rahim, N.A.: Multilevel inverter for grid-connected PV system employing digital PI controller. IEEE Trans. Industr. Electron. 56(1), 149–158 (2009)

    Article  Google Scholar 

  30. Keddar, M.; Doumbia, M.L.; Della, M.; Belmokhtar, K.; Midoun, A.: Interconnection performance analysis of single phase neural network based NPC and CHB multilevel inverters for grid-connected PV systems. Int. J. Renew. Energy Res. (IJRER) 9(3), 1451–1461 (2019)

    Google Scholar 

  31. Alonso Martı’nez, J.; Eloy-Garcı’a, J.; Arnaltes.: Direct power control of grid connected PV systems with three level NPC inverter. Sol. Energy 84, 1175–1186 (2010)

    Article  Google Scholar 

  32. Sasikishore, B.; | T Amar Kiran, : PV based shunt active power filter for power quality improvement using P-Q theory. Int. J. Mod. Trends Sci. Technol. 3(1), 8–15 (2017)

    Google Scholar 

  33. Sundar, R.; Gnanavel, C.; Muthukumar, P.: A unique single source nine level inverter with reduced switching devices for single phase AC applications. Int. J. Eng. Adv. Technol. (IJEAT) 9(2), 4098–4101 (2019)

    Article  Google Scholar 

  34. Biswal, M.; Malla, J.M.R.: THD analysis of a seven, nine, and eleven level cascaded H-bridge multilevel inverter for different loads. Tehnički Glasnik 14(4), 514–523 (2020)

    Article  Google Scholar 

  35. Anand, R.; Kamatchi, M.A.: Fifteen level cascaded H-bridge multilevel inverter with reduced number of switches. Int. J. Adv. Eng. Res. Sci. 2(11), 17–25 (2015)

    Google Scholar 

  36. Chattoraj, J.; Dwivedi, A.; Pahariya, Y.: Enhancement of power quality in SAPS system with multilevel inverter. Int. J. Eng. Sci. Res. Technol. 6(5), 779–788 (2017)

    Google Scholar 

  37. Zulkefle, A.; Rahman, A.I.A.; Zainon, M.; Baharudin, Z.A.; Zakaria, Z.; Farriz, M.B.; Hanafiah, M.A.M.: Modeling and simulation of nine-level cascaded H-bridge multilevel inverter. Indones. J. Electr. Eng. Comput. Sci. (IJEECS) 11(2), 696–703 (2018)

    Google Scholar 

  38. Loh, P.C.; Holmes, D.G.: Analysis of multiloop control strategies for LC/CL/LCL-filtered voltage-source and current-source inverters. IEEE Trans. Ind. Appl. 41, 644–654 (2005)

    Article  Google Scholar 

  39. Varma, R.K.; Siavashi, E.M.: PV-STATCOM: a new smart inverter for voltage control in distribution systems. IEEE Trans. Sustain. Energy 9(4), 1681–1691 (2018)

    Article  Google Scholar 

  40. Daut, I.; Irwanto, M.; Irwan, Y.M.; Gomesh, N.; Ahmad, N.S.: Optimization of current total harmonic distortion on three-level transformerless photovoltaic inverter. Energy Procedia 14(1), 1560–1565 (2012)

    Article  Google Scholar 

  41. T and D Committee: IEEE recommended practice and requirements for harmonic control in electric power systems. In: IEEE Std 519-2014 (Revision of IEEE Std 519–1992), pp. 1–29 (2014)

  42. Liu, B.; Wang, L.; Song, D.; Su, M.; Yang, J.; He, D.; Chen, Z.; Song, S.: Input current ripple and grid current harmonics restraint approach for single-phase inverter under battery input condition in residential photovoltaic/battery systems. IEEE Trans. Sustain. Energy. 9(1), 1957–1968 (2018)

    Article  Google Scholar 

  43. Hmidet, A.; Dhifaoui, R.; Hasnaoui, O.: Development, implementation and experimentation on a dSPACE DS1104 of a direct voltage control scheme. J. Power Electron. 10, 468–476 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Kumar Patra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, D., Kar, S. & Patra, A.K. Harmonic Distortion Assessment in the Single-Phase Photovoltaic (PV) System Based on SPWM Technique. Arab J Sci Eng 46, 9601–9615 (2021). https://doi.org/10.1007/s13369-021-05437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05437-6

Keywords

Navigation