Integrated Roles of MoS2 Nanosheets for Water Treatment and Polymer Flame Retardant


Layered MoS2 nanosheets have been widely investigated for wastewater treatment or polymer flame retardant alone, while few reports concern about their integrated utilization within the two fields. Herein, the authors creatively explored the multiple roles of MoS2 nanosheets for simultaneous water treatment and polymers flame retardant. MoS2 nanosheets were firstly employed as adsorbents for heavy metals removal and organics elimination in wastewater. The adsorption capacities of MoS2 for methylene blue (MB) and methyl orange (MO), Co2+, Ni2+, were found 181.8, 102.1, 61.7 and 51.8 mg/g, separately, due to the chemical and electrostatic interactions. Then the MoS2 nanosheets after water treatment (MoS2−x) were blended into polystyrene (PS) to study their flame-retardant properties and integrated utilization explorations. Results based on thermal stability, smoke suppression and heat resistance revealed that MoS2−x/PS composites displayed slower heat release rate (HRR), smaller smoke production rate (SPR) and lower CO production rate (COP) but higher T−10% than that of pristine PS, demonstrating the excellent flame-retardant efficiency of MoS2−x. Mechanisms for the great promotion in flame-retardant properties were found mainly resulted from nano-barrier and block wall effect of MoS2−x. Meanwhile, the rapid formation of char residue during the combustion also contributed to the improvement. Investigations in the present work implied the MoS2 nanosheets could not only remove heavy metals and organics, but also can simultaneously delay the polymer combustion, demonstrating the excellent integrated and multiple roles of MoS2 nanosheets in water remediation and polymer flame retardant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1


  1. 1.

    Tkaczyk, A.; Mitrowska, K.; Posyniak, A.: Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci. Total Environ. 717, 137222–137279 (2020)

    Article  Google Scholar 

  2. 2.

    Korish, M.A.; Attia, Y.A.: Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals. 10, 727–750 (2020)

    Article  Google Scholar 

  3. 3.

    Malik, D.S.; Jain, C.K.; Yadav, A.K.: Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl. Water Sci. 7, 2113–2136 (2017)

    Article  Google Scholar 

  4. 4.

    Das, R.; Vecitis, C.D.; Schulze, A.; Cao, B.; Ismail, A.F.; Lu, X.; Chen, J.; Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. 46, 6946–7020 (2017)

    Article  Google Scholar 

  5. 5.

    Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M.: Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J. Environ. Chem. Eng. 5, 2782–2799 (2017)

    Article  Google Scholar 

  6. 6.

    Sajid, M.; Nazal, M.K.; Ihsanullah, D.; Baig, N.; Osman, A.M.: Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents a critical review. Sep. Purif. Technol. 191, 400–423 (2017)

    Article  Google Scholar 

  7. 7.

    Zhang, P.; Gong, J.L.; Zeng, G.M.; Deng, C.H.; Yang, H.C.; Liu, H.Y.; Huan, S.Y.: Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 322, 657–666 (2017)

    Article  Google Scholar 

  8. 8.

    Ranjith, K.S.; Manivel, P.; Rajendrakumar, R.T.; Uyar, T.: Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem. Eng. J. 325, 588–600 (2017)

    Article  Google Scholar 

  9. 9.

    Lu, F.; Astruc, D.: Nanomaterials for removal of toxic elements from water precipitaion adsorption heavy metals removal ion exchange filtration coagulation bio-sorprtion. Coord. Chem. Rev. 356, 147–164 (2018)

    Article  Google Scholar 

  10. 10.

    Ye, L.; Xu, H.; Zhang, D.; Chen, S.: Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Mater. Res. Bull. 55, 221–228 (2014)

    Article  Google Scholar 

  11. 11.

    Li, H.; Xie, F.; Li, W.; Fahlman, B.D.; Chen, M.; Li, W.: Preparation and adsorption capacity of porous MoS2 nanosheets. RSC Adv. 6, 105222–105230 (2016)

    Article  Google Scholar 

  12. 12.

    Lu, H.; Wang, J.; Tian, B.; Huang, X.; Bi, J.; Wang, T.; Hao, H.: Application of N-doped MoS2 nanocrystals for removal of azo dyes in wastewater. Chem. Eng. Technol. 41, 1180–1187 (2018)

    Article  Google Scholar 

  13. 13.

    Dong, L.; Li, Q.; Liao, Q.; Sun, C.; Li, X.; Zhao, Q.; Shen, R.; Zhao, B.; Asiri, A.M.; Marwani, H.M.: Characterization of molybdenum disulfide nanomaterial and its excellent sorption abilities for two heavy metals in aqueous media. Sep. Sci. Technol. 54, 847–859 (2019)

    Article  Google Scholar 

  14. 14.

    Wang, Q.; Yang, L.; Jia, F.; Li, Y.; Song, S.: Removal of Cd(II) from water by using nano-scale molybdenum disulphide sheets as adsorbents. J. Mol. Liq. (2018).

    Article  Google Scholar 

  15. 15.

    Liu, C.; Jia, F.; Wang, Q.; Yang, B.; Song, S.: Two-dimensional molybdenum disulfide as adsorbent for high-efficient Pb(II) removal from water. Appl. Mater. Today. 9, 220–228 (2017)

    Article  Google Scholar 

  16. 16.

    Jia, F.; Wang, Q.; Wu, J.; Li, Y.; Song, S.: Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water. ACS Sustain. Chem. Eng. 5, 7410–7419 (2017)

    Article  Google Scholar 

  17. 17.

    Wang, Z.; Mi, B.: Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017)

    Article  Google Scholar 

  18. 18.

    Citeau, M.; Olivier, J.; Mahmoud, A.; Vaxelaire, J.; Larue, O.; Vorobiev, E.: Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis. Water Res. 46, 4405–4416 (2012)

    Article  Google Scholar 

  19. 19.

    Mackie, A.L.; Walsh, M.E.: Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent. Water Res. 46, 327–334 (2012)

    Article  Google Scholar 

  20. 20.

    Lo, K.S.L.; Chen, Y.H.: Extracting heavy metals from municipal and industrial sludges. Sci. Total Environ. 90, 99–116 (1990)

    Article  Google Scholar 

  21. 21.

    Devi, P.; Saroha, A.K.: Utilization of sludge based adsorbents for the removal of various pollutants: a review. Sci. Total Environ. 578, 16–33 (2016)

    Article  Google Scholar 

  22. 22.

    Sethu, V.S.; Aziz, A.R.; Aroua, M.K.: Recovery and reutilisation of copper from metal hydroxide sludges. Clean Technol. Environ. Policy. 10, 131–136 (2008)

    Article  Google Scholar 

  23. 23.

    Zhou, K.; Gao, R.; Qian, X.: Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. J. Hazard. Mater. 338, 343–355 (2017)

    Article  Google Scholar 

  24. 24.

    Zhou, K.; Liu, J.; Shi, Y.; Jiang, S.; Wang, D.; Hu, Y.; Gui, Z.: MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites. ACS Appl. Mater. Inter. 7, 6070–6081 (2015)

    Article  Google Scholar 

  25. 25.

    Matusinovic, Z.; Shukla, R.; Manias, E.; Hogshead, C.G.; Wilkie, C.A.: Polystyrene/molybdenum disulfide and poly (methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym. Degrad. Stab. 97, 2481–2486 (2012)

    Article  Google Scholar 

  26. 26.

    Zhou, K.; Gui, Z.; Hu, Y.: Synthesis and characterization of Cu-MoS2 hybrids and its influence on the thermal behavior of polyvinyl chloride composites. RSC Adv. 6, 88707–88712 (2016)

    Article  Google Scholar 

  27. 27.

    Wang, D.; Song, L.; Zhou, K.; Yu, X.; Hu, Y.; Wang, J.: Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A. 3, 14307–14317 (2015)

    Article  Google Scholar 

  28. 28.

    Zhou, K.; Jiang, S.; Shi, Y.; Liu, J.; Wang, B.; Hu, Y.; Gui, Z.: Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Adv. 4, 40170–40180 (2014)

    Article  Google Scholar 

  29. 29.

    Feng, X.; Xing, W.; Song, L.; Hu, Y.: In situ synthesis of a MoS2/CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. J. Mater. Chem. A. 2, 13299–13308 (2014)

    Article  Google Scholar 

  30. 30.

    Zhou, K.; Zhang, Q.; Liu, J.; Wang, B.; Jiang, S.; Shi, Y.; Hu, Y.; Gui, Z.: Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv. 4, 13205–13214 (2014)

    Article  Google Scholar 

  31. 31.

    Yang, L.; Wang, Q.; Rangel-Mendez, J.R.; Jia, F.; Song, S.; Yang, B.: Self-assembly montmorillonite nanosheets supported hierarchical MoS2 as enhanced catalyst toward methyl orange degradation. Mater. Chem. Phys. 246, 122829–122837 (2020)

    Article  Google Scholar 

  32. 32.

    Jia, F.; Sun, K.; Yang, B.; Zhang, X.; Wang, Q.; Song, S.: Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water. Desalination 446, 21–30 (2018)

    Article  Google Scholar 

  33. 33.

    Yang, G.; Gao, Q.; Yang, S.; Yin, S.; Cai, X.; Yu, X.; Zhang, S.; Fang, Y.: Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. Chemosphere 239, 124831–124831 (2020)

    Article  Google Scholar 

  34. 34.

    Jalees, M.I.; Farooq, M.U.; Basheer, S.; Asghar, S.: Removal of heavy metals from drinking water using chikni mitti (kaolinite): isotherm and kinetics. Arab. J. Sci. Eng. (2019).

    Article  Google Scholar 

  35. 35.

    Dai, Y.; Li, J.; Shan, D.: Adsorption of tetracycline in aqueous solution by biochar derived from waste auricularia auricula dregs. Chemosphere 238, 124432–124432 (2020)

    Article  Google Scholar 

  36. 36.

    Massey, A.T.; Gusain, R.; Kumari, S.; Khatri, O.P.: Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 55, 7124–7131 (2016)

    Article  Google Scholar 

  37. 37.

    Xiong, L.; Yang, Y.; Mai, J.X.; Sun, W.L.; Zhang, C.Y.; Wei, D.P.; Chen, Q.; Ni, J.R.: Adsorption behavior of methylene blue onto titanate nanotubes. Chem. Eng. J. 156, 313–320 (2010)

    Article  Google Scholar 

  38. 38.

    Zhou, K.; Zhang, Q.; Wang, B.; Liu, J.; Wen, P.; Gui, Z.; Hu, Y.: The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites. J. Clean. Prod. 81, 281–289 (2014)

    Article  Google Scholar 

  39. 39.

    Gu, P.; Zhao, C.; Wen, T.; Ai, Y.; Zhang, S.; Chen, W.; Wang, J.; Hu, B.; Wang, X.: Highly U(VI) immobilization on polyvinyl pyrrolidine intercalated molybdenum disulfide: experimental and computational studies. Chem. Eng. J. 359, 1563–1572 (2019)

    Article  Google Scholar 

  40. 40.

    Xu, M.; Zhou, H.; Wu, Z.; Li, N.; Xiong, Z.; Yao, G.; Lai, B.: Efficient degradation of sulfamethoxazole by NiCo2O4 modified expanded graphite activated peroxymonosulfate: characterization, mechanism and degradation intermediates. J. Hazard. Mater. (2020).

    Article  Google Scholar 

  41. 41.

    Ren, J.; Cao, J.-P.; Yang, F.-L.; Zhao, X.-Y.; Tang, W.; Cui, X.; Chen, Q.; Wei, X.-Y.: Layered uniformly delocalized electronic structure of carbon supported Ni catalyst for catalytic reforming of toluene and biomass tar. Energy Convers. Manag. 183, 182–192 (2019)

    Article  Google Scholar 

  42. 42.

    Huang, C.; Yu, Y.; Tang, X.; Liu, Z.; Zhang, J.; Ye, C.; Ye, Y.; Zhang, R.: Hydrogen generation by ammonia decomposition over Co/CeO2 catalyst: Influence of support morphologies. Appl. Surf. Sci. 532, 147335 (2020)

    Article  Google Scholar 

  43. 43.

    Shi, Y.; Gui, Z.; Yuan, B.; Hu, Y.; Zheng, Y.: Flammability of polystyrene/aluminim phosphinate composites containing modified ammonium polyphosphate. J. Therm. Anal. Calorim. 131, 1067–1077 (2018)

    Article  Google Scholar 

  44. 44.

    Manzi-Nshuti, C.; Chen, D.; Su, S.; Wilkie, C.A.: Structure-property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum. Polym. Degrad. Stab. 94, 1290–1297 (2009)

    Article  Google Scholar 

  45. 45.

    Wang, L.; Su, S.; Chen, D.; Wilkie, C.A.: Variation of anions in layered double hydroxides: effects on dispersion and fire properties. Polym. Degrad. Stab. 94, 770–781 (2009)

    Article  Google Scholar 

  46. 46.

    Wang, X.; Zhou, S.; Xing, W.; Yu, B.; Feng, X.; Song, L.; Hu, Y.: Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A. 1, 4383–4390 (2013)

    Article  Google Scholar 

  47. 47.

    Tai, Q.; Hu, Y.; Yuen, R.K.K.; Song, L.; Lu, H.: Synthesis, structure–property relationships of polyphosphoramides with high char residues. J. Mater. Chem. 21, 6621–6627 (2011)

    Article  Google Scholar 

  48. 48.

    Song, R.: Synthesis of carbon nanotubes from polypropylene in the presence of Ni/Mo/MgO catalysts via combustion. Chem. Lett. 40, 1110–1112 (2011)

    Article  Google Scholar 

  49. 49.

    Yuan, B.; Hu, Y.; Chen, X.; Shi, Y.; Niu, Y.; Zhang, Y.; He, S.; Dai, H.: Dual modification of graphene by polymeric flame retardant and Ni(OH)2 nanosheets for improving flame retardancy of polypropylene. Compos. Part A Appl. Sci. Manuf. 100, 106–117 (2017)

    Article  Google Scholar 

Download references


Financial supports in the present work are from the Shandong Provincial Education Department, China (Grant No. J18KB083), Qingchuang Talent Incubation Program from Colleges and universities in Shandong Province (Grant No. 2019.133), Ship Control Engineering and Intelligent Systems Engineering Technology Research Center of Shandong Province and Ship Motion Control and Systems Engineering Technology Research center of Weihai, China (Grant No. SSCC-2018-0001 and SSCC-2019-0005), the Shandong Postdoctoral Innovation Project, the Postdoctoral Science Foundation of Weihai Science and Technology Bureau, the Postdoctoral Science Foundation of Homey Group Co. Ltd.

Author information



Corresponding authors

Correspondence to Lang Yang or Yongjun Sun.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 140kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tang, C., Yang, L. et al. Integrated Roles of MoS2 Nanosheets for Water Treatment and Polymer Flame Retardant. Arab J Sci Eng (2021).

Download citation


  • Exhausted MoS2 nanosheets
  • Adsorption
  • Wastewater treatment
  • Integrated roles
  • Polymer flame retardant