Abstract
Deposition of thin film with good thickness uniformity and quality for fabrication of thin film-based dye-sensitized solar cells is a critical factor that determines the reliability and consistency of its photovoltaic performance. In this work, dip-coating method was used for the deposition of ZnO thin films on fluorine-doped tin oxide glass substrates. The structural, electrical and optical properties of these ZnO thin films were characterized by XRD, FESEM, four-point probe, UV–Vis spectroscope and room temperature PL spectroscope. The study showed that the thickness of ZnO thin film could be adjusted by the number of dipping cycles. By increasing the dip-coating cycles, the thickness, crystal quality and absorbance of visible light of ZnO thin films increased whereas the sheet resistance of ZnO thin films decreased. As a consequence, the photovoltaic performance of DSSCs improved with maximum conversion efficiency of 0.68% at 3 cycles of dip coating. Nevertheless, formation of macro-defects such as pores and cracks in thick ZnO thin films became the dominant factor that deteriorated their conversion efficiency down to 0.19% (at 11 cycles).
This is a preview of subscription content, access via your institution.









References
- 1.
Almond, D.P.; Patel, P.; Patel, P.: Photothermal Science and Techniques, Vol. 10. Springer, London (1996)
- 2.
Gratzel, M.: Heterogenous Photochemical Electron Transfer. CRC Press, Florida (2018)
- 3.
Grätzel, M.: Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)
- 4.
Yehezkeli, O.; Tel-Vered, R.; Michaeli, D.; Willner, I.; Nechushtai, R.: Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. Photosynth. Res. 120(1–2), 71–85 (2014). https://doi.org/10.1007/s11120-013-9796-3
- 5.
Fahrenbruch, A.; Bube, R.: Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion. Elsevier, London (2012)
- 6.
Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995). https://doi.org/10.1126/science.270.5243.1789
- 7.
Goetzberger, A.; Knobloch, J.; Voss, B.: Crystalline silicon solar cells. New York, 114–118 (1998).
- 8.
Hovel, H.J.: Solar cells. STIA 76 (1975).
- 9.
Pizzini, S.: Advanced Silicon Materials for Photovoltaic Applications. Wiley, London (2012)
- 10.
Goetzberger, A.; Hebling, C.; Schock, H.-W.: Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 40(1), 1–46 (2003). https://doi.org/10.1016/S0927-796X(02)00092-X
- 11.
Poortmans, J.; Arkhipov, V.: Thin Film Solar Cells: Fabrication, Characterization and Applications, Vol. 5. Wiley, London (2006)
- 12.
Ong, P.-L.; Levitsky, I.: Organic/IV III-V semiconductor hybrid solar cells. Energies 3(3), 313–334 (2010). https://doi.org/10.3390/en3030313
- 13.
Abdulrazzaq, O.A.; Saini, V.; Bourdo, S.; Dervishi, E.; Biris, A.S.: Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part. Sci. Technol. 31(5), 427–442 (2013). https://doi.org/10.1080/02726351.2013.769470
- 14.
Kumar, P.M.; Das, A.; Seban, L.; Nair, R.G.: Fabrication and life time of perovskite solar cells. In: Perovskite Photovoltaics. pp. 231–287. Elsevier (2018)
- 15.
Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005). https://doi.org/10.1021/ic0508371
- 16.
Wang, M.; Liu, J.; Cevey-Ha, N.-L.; Moon, S.-J.; Liska, P.; Humphry-Baker, R.; Moser, J.-E.; Grätzel, C.; Wang, P.; Zakeeruddin, S.M.: High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today 5(3), 169–174 (2010). https://doi.org/10.1016/j.nantod.2010.04.001
- 17.
Qi, L.; Li, C.; Chen, Y.: Dye-sensitized solar cells based on nitrogen-doped TiO2–B nanowire/TiO2 nanoparticle composite photoelectrode. Chem. Phys. Lett. 539, 128–132 (2012). https://doi.org/10.1016/j.cplett.2012.05.027
- 18.
Jha, A.R.: Solar Cell Technology and Applications. Auerbach Publications, Boca Raton (2009)
- 19.
Catchpole, K.R.; McCann, M.J.; Weber, K.J.; Blakers, A.W.: A review of thin-film crystalline silicon for solar cell applications. Part 2: foreign substrates. Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001). https://doi.org/10.1016/S0927-0248(00)00246-4
- 20.
Kim, D.; Yu, Y.-M.; Lee, J.; Choi, Y.: Investigation of energy band gap and optical properties of cubic CdS epilayers. Appl. Surf. Sci. 254(22), 7522–7526 (2008). https://doi.org/10.1016/j.apsusc.2008.06.008
- 21.
Vispute, R.; Talyansky, V.; Choopun, S.; Sharma, R.; Venkatesan, T.; He, M.; Tang, X.; Halpern, J.; Spencer, M.; Li, Y.: Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 73(3), 348–350 (1998). https://doi.org/10.1063/1.121830
- 22.
Pauporté, T.; Lincot, D.: Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochim. Acta 45(20), 3345–3353 (2000). https://doi.org/10.1016/S0013-4686(00)00405-9
- 23.
Li, H.; Zhang, Y.; Pan, X.; Wang, T.; Xie, E.: The effects of thermal annealing on properties of MgxZn1− xO films by sputtering. J. Alloys Compd. 472(1–2), 208–210 (2009). https://doi.org/10.1016/j.jallcom.2008.04.018
- 24.
Fan, Z.; Wang, D.; Chang, P.-C.; Tseng, W.-Y.; Lu, J.G.: ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85(24), 5923–5925 (2004). https://doi.org/10.1063/1.1836870
- 25.
Suh, D.-I.; Lee, S.-Y.; Kim, T.-H.; Chun, J.-M.; Suh, E.-K.; Yang, O.-B.; Lee, S.-K.: The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442(4–6), 348–353 (2007). https://doi.org/10.1016/j.cplett.2007.05.093
- 26.
Baxter, J.B.; Aydil, E.S.: Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 90(5), 607–622 (2006). https://doi.org/10.1016/j.solmat.2005.05.010
- 27.
Baxter, J.B.; Walker, A.; Van Ommering, K.; Aydil, E.: Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanot 17(11), S304 (2006). https://doi.org/10.1088/0957-4484/17/11/s13
- 28.
Pung, S.-Y.; Choy, K.-L.; Hou, X.; Shan, C.: Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanot 19(43), 435609 (2008). https://doi.org/10.1088/0957-4484/19/43/435609
- 29.
Banerjee, A.; Ghosh, C.; Chattopadhyay, K.; Minoura, H.; Sarkar, A.K.; Akiba, A.; Kamiya, A.; Endo, T.: Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films 496(1), 112–116 (2006). https://doi.org/10.1016/j.tsf.2005.08.258
- 30.
Gu, X.; Zhu, L.; Cao, L.; Ye, Z.; He, H.; Chu, P.K.: Optical and electrical properties of ZnO: Al thin films synthesized by low-pressure pulsed laser deposition. Mater. Sci. Semicond. Process. 14(1), 48–51 (2011). https://doi.org/10.1016/j.mssp.2011.01.003
- 31.
Hasim, S.N.F.; Hamid, M.A.A.; Shamsudin, R.; Jalar, A.: Synthesis and characterization of ZnO thin films by thermal evaporation. J. Phys. Chem. Solids 70(12), 1501–1504 (2009). https://doi.org/10.1016/j.jpcs.2009.09.013
- 32.
Ravanbakhsh, A.; Rashchi, F.; Sohi, M.H.; Nekouei, R.K.: Synthesis of nanostructured zinc oxide thin films by anodic oxidation method. Adv. Mater. Res 829, 347–351 (2014). https://doi.org/10.4028/www.scientific.net/AMR.829.347
- 33.
Zhao, J.; Hu, L.; Wang, Z.; Zhao, Y.; Liang, X.; Wang, M.: High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn. Appl. Surf. Sci. 229(1–4), 311–315 (2004). https://doi.org/10.1016/j.apsusc.2004.02.010
- 34.
Kim, Y.-S.; Tai, W.-P.; Shu, S.-J.: Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin Solid Films 491(1–2), 153–160 (2005). https://doi.org/10.1016/j.tsf.2005.06.013
- 35.
Mathew, J.P.; Varghese, G.; Mathew, J.: Effect of post-thermal annealing on the structural and optical properties of ZnO thin films prepared from a polymer precursor. Chin. Phys. B 21(7), 078104 (2012). https://doi.org/10.1088/1674-1056/21/7/078104
- 36.
Sophocleous, M.: Electrical resistivity sensing methods and implications. In: EI-Shahat A (ed) Electrical resistivity and conductivity. INTECH, Crotia, 5 (2017)
- 37.
Azqhandi, M.H.A.; Rajabi, F.; Keramati, M.: Synthesis of Cd doped ZnO/CNT nanocomposite by using microwave method: Photocatalytic behavior, adsorption and kinetic study. Res. Phys 7, 1106–1114 (2017). https://doi.org/10.1016/j.rinp.2017.02.033
- 38.
McCluskey, M.D.; Jokela, S.: Defects in ZnO. J. Appl. Phys. 106(7), 10 (2009). https://doi.org/10.1063/1.3216464
- 39.
Nagayasamy, N.; Gandhimathination, S.; Veerasamy, V.: The effect of ZnO thin film and its structural and optical properties prepared by sol-gel spin coating method. OJMetal 3(02), 8 (2013)
- 40.
Banyamin, Z.Y.; Kelly, P.J.; West, G.; Boardman, J.: Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coat 4(4), 732–746 (2014). https://doi.org/10.3390/coatings4040732
- 41.
Rodnyi, P.; Khodyuk, I.: Optical and luminescence properties of zinc oxide. Opt. Spectrosc. 111(5), 776–785 (2011). https://doi.org/10.1134/S0030400X11120216
- 42.
Panigrahy, B.; Aslam, M.; Bahadur, D.: Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods. Nanot 23(11), 115601 (2012). https://doi.org/10.1088/0957-4484/23/11/115601
- 43.
Leung, Y.; Chen, X.; Ng, A.; Guo, M.; Liu, F.; Djurišić, A.; Chan, W.; Shi, X.; Van Hove, M.: Green emission in ZnO nanostructures—examination of the roles of oxygen and zinc vacancies. Appl. Surf. Sci. 271, 202–209 (2013). https://doi.org/10.1016/j.apsusc.2013.01.160
- 44.
Mann, J.R.; Gannon, M.K.; Fitzgibbons, T.C.; Detty, M.R.; Watson, D.F.: Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films. J. Phys. Chem. C 112(34), 13057–13061 (2008). https://doi.org/10.1021/jp803990b
- 45.
Xu, L.; Kuang, W.; Liu, Z.; Xian, F.: Improvement of UV emission in ZnO thin film caused by a transition from polycrystalline to monocrystalline. Phys. B. Condens. Matter 583, 412010 (2020). https://doi.org/10.1016/j.physb.2020.412010
- 46.
Kong, H.; Lee, H.-Y.: High performance flexible transparent conductive electrode based on ZnO/AgOx/ZnO multilayer. Thin Solid Films 696, 137759 (2020). https://doi.org/10.1016/j.tsf.2019.137759
- 47.
Yu, Y.; Yao, B.; He, Y.; Cao, B.; Ma, W.; Chang, L.: Oxygen defect-rich In-doped ZnO nanostructure for enhanced visible light photocatalytic activity. Mater. Chem. Phys. 244, 122672 (2020). https://doi.org/10.1016/j.matchemphys.2020.122672
- 48.
Sil, M.C.; Chen, L.-S.; Lai, C.-W.; Lee, Y.-H.; Chang, C.-C.; Chen, C.-M.: Enhancement of power conversion efficiency of dye-sensitized solar cells for indoor applications by using a highly responsive organic dye and tailoring the thickness of photoactive layer. J. Power Sources 479, 229095 (2020). https://doi.org/10.1016/j.jpowsour.2020.229095
- 49.
Kouhestanian, E.; Mozaffari, S.A.; Ranjbar, M.; Amoli, H.S.: Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer. Org. Electron. 86, 105915 (2020). https://doi.org/10.1016/j.jpowsour.2020.229095
- 50.
Zhang, Q.; Hou, S.; Li, C.: Titanium dioxide-coated zinc oxide nanorods as an efficient photoelectrode in dye-sensitized solar cells. Nanomaterials 10(8), 1598 (2020). https://doi.org/10.3390/nano10081598
- 51.
Saputrina, T.T.; Iwantono, I.; Awitdrus, A.; Umar, A.A.: Performances of dye-sensitized solar cell (DSSC) with working electrode of aluminum-doped ZnO nanorods. Sci. Technol. Commun. J. 1(1), 1–7 (2020). https://doi.org/10.1016/j.jpcs.2010.08.020
- 52.
Yang, S.; Sha, S.; Lu, H.; Wu, J.; Ma, J.; Wang, D.; Sheng, Z.: Electrodeposition of hierarchical zinc oxide nanostructures on metal meshes as photoanodes for flexible dye-sensitized solar cells. Colloids Surf. Physicochem. Eng. Aspects (2020). https://doi.org/10.1016/j.colsurfa.2020.124665
Acknowledgements
The authors would like to express appreciation for the financial support of AUN/SEED-Net (Grant Number: 304.PBAHAN.6050390/J135), as well as support from the Electrical and Electronic Information Engineering department at the Toyohashi University of Technology (TUT), Prof Akihiro Wakahara of the Toyohashi University of Technology(TUT) for the photoluminescence measurements.
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Toe, M.Z., Pung, SY., Yaacob, K.A.B. et al. Effect of Dip-Coating Cycles on the Structural and Performance of ZnO Thin Film-based DSSC. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-021-05418-9
Received:
Accepted:
Published:
Keywords
- Dip coating
- DSSC
- FTO
- thin film
- ZnO