Effect of Dip-Coating Cycles on the Structural and Performance of ZnO Thin Film-based DSSC

Abstract

Deposition of thin film with good thickness uniformity and quality for fabrication of thin film-based dye-sensitized solar cells is a critical factor that determines the reliability and consistency of its photovoltaic performance. In this work, dip-coating method was used for the deposition of ZnO thin films on fluorine-doped tin oxide glass substrates. The structural, electrical and optical properties of these ZnO thin films were characterized by XRD, FESEM, four-point probe, UV–Vis spectroscope and room temperature PL spectroscope. The study showed that the thickness of ZnO thin film could be adjusted by the number of dipping cycles. By increasing the dip-coating cycles, the thickness, crystal quality and absorbance of visible light of ZnO thin films increased whereas the sheet resistance of ZnO thin films decreased. As a consequence, the photovoltaic performance of DSSCs improved with maximum conversion efficiency of 0.68% at 3 cycles of dip coating. Nevertheless, formation of macro-defects such as pores and cracks in thick ZnO thin films became the dominant factor that deteriorated their conversion efficiency down to 0.19% (at 11 cycles).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Almond, D.P.; Patel, P.; Patel, P.: Photothermal Science and Techniques, Vol. 10. Springer, London (1996)

    Google Scholar 

  2. 2.

    Gratzel, M.: Heterogenous Photochemical Electron Transfer. CRC Press, Florida (2018)

    Google Scholar 

  3. 3.

    Grätzel, M.: Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)

    Article  Google Scholar 

  4. 4.

    Yehezkeli, O.; Tel-Vered, R.; Michaeli, D.; Willner, I.; Nechushtai, R.: Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. Photosynth. Res. 120(1–2), 71–85 (2014). https://doi.org/10.1007/s11120-013-9796-3

    Article  Google Scholar 

  5. 5.

    Fahrenbruch, A.; Bube, R.: Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion. Elsevier, London (2012)

    Google Scholar 

  6. 6.

    Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995). https://doi.org/10.1126/science.270.5243.1789

    Article  Google Scholar 

  7. 7.

    Goetzberger, A.; Knobloch, J.; Voss, B.: Crystalline silicon solar cells. New York, 114–118 (1998).

  8. 8.

    Hovel, H.J.: Solar cells. STIA 76 (1975).

  9. 9.

    Pizzini, S.: Advanced Silicon Materials for Photovoltaic Applications. Wiley, London (2012)

    Google Scholar 

  10. 10.

    Goetzberger, A.; Hebling, C.; Schock, H.-W.: Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 40(1), 1–46 (2003). https://doi.org/10.1016/S0927-796X(02)00092-X

    Article  Google Scholar 

  11. 11.

    Poortmans, J.; Arkhipov, V.: Thin Film Solar Cells: Fabrication, Characterization and Applications, Vol. 5. Wiley, London (2006)

    Google Scholar 

  12. 12.

    Ong, P.-L.; Levitsky, I.: Organic/IV III-V semiconductor hybrid solar cells. Energies 3(3), 313–334 (2010). https://doi.org/10.3390/en3030313

    Article  Google Scholar 

  13. 13.

    Abdulrazzaq, O.A.; Saini, V.; Bourdo, S.; Dervishi, E.; Biris, A.S.: Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part. Sci. Technol. 31(5), 427–442 (2013). https://doi.org/10.1080/02726351.2013.769470

    Article  Google Scholar 

  14. 14.

    Kumar, P.M.; Das, A.; Seban, L.; Nair, R.G.: Fabrication and life time of perovskite solar cells. In: Perovskite Photovoltaics. pp. 231–287. Elsevier (2018)

  15. 15.

    Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005). https://doi.org/10.1021/ic0508371

    Article  Google Scholar 

  16. 16.

    Wang, M.; Liu, J.; Cevey-Ha, N.-L.; Moon, S.-J.; Liska, P.; Humphry-Baker, R.; Moser, J.-E.; Grätzel, C.; Wang, P.; Zakeeruddin, S.M.: High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today 5(3), 169–174 (2010). https://doi.org/10.1016/j.nantod.2010.04.001

    Article  Google Scholar 

  17. 17.

    Qi, L.; Li, C.; Chen, Y.: Dye-sensitized solar cells based on nitrogen-doped TiO2–B nanowire/TiO2 nanoparticle composite photoelectrode. Chem. Phys. Lett. 539, 128–132 (2012). https://doi.org/10.1016/j.cplett.2012.05.027

    Article  Google Scholar 

  18. 18.

    Jha, A.R.: Solar Cell Technology and Applications. Auerbach Publications, Boca Raton (2009)

    Google Scholar 

  19. 19.

    Catchpole, K.R.; McCann, M.J.; Weber, K.J.; Blakers, A.W.: A review of thin-film crystalline silicon for solar cell applications. Part 2: foreign substrates. Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001). https://doi.org/10.1016/S0927-0248(00)00246-4

    Article  Google Scholar 

  20. 20.

    Kim, D.; Yu, Y.-M.; Lee, J.; Choi, Y.: Investigation of energy band gap and optical properties of cubic CdS epilayers. Appl. Surf. Sci. 254(22), 7522–7526 (2008). https://doi.org/10.1016/j.apsusc.2008.06.008

    Article  Google Scholar 

  21. 21.

    Vispute, R.; Talyansky, V.; Choopun, S.; Sharma, R.; Venkatesan, T.; He, M.; Tang, X.; Halpern, J.; Spencer, M.; Li, Y.: Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 73(3), 348–350 (1998). https://doi.org/10.1063/1.121830

    Article  Google Scholar 

  22. 22.

    Pauporté, T.; Lincot, D.: Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochim. Acta 45(20), 3345–3353 (2000). https://doi.org/10.1016/S0013-4686(00)00405-9

    Article  Google Scholar 

  23. 23.

    Li, H.; Zhang, Y.; Pan, X.; Wang, T.; Xie, E.: The effects of thermal annealing on properties of MgxZn1− xO films by sputtering. J. Alloys Compd. 472(1–2), 208–210 (2009). https://doi.org/10.1016/j.jallcom.2008.04.018

    Article  Google Scholar 

  24. 24.

    Fan, Z.; Wang, D.; Chang, P.-C.; Tseng, W.-Y.; Lu, J.G.: ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85(24), 5923–5925 (2004). https://doi.org/10.1063/1.1836870

    Article  Google Scholar 

  25. 25.

    Suh, D.-I.; Lee, S.-Y.; Kim, T.-H.; Chun, J.-M.; Suh, E.-K.; Yang, O.-B.; Lee, S.-K.: The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442(4–6), 348–353 (2007). https://doi.org/10.1016/j.cplett.2007.05.093

    Article  Google Scholar 

  26. 26.

    Baxter, J.B.; Aydil, E.S.: Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 90(5), 607–622 (2006). https://doi.org/10.1016/j.solmat.2005.05.010

    Article  Google Scholar 

  27. 27.

    Baxter, J.B.; Walker, A.; Van Ommering, K.; Aydil, E.: Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanot 17(11), S304 (2006). https://doi.org/10.1088/0957-4484/17/11/s13

    Article  Google Scholar 

  28. 28.

    Pung, S.-Y.; Choy, K.-L.; Hou, X.; Shan, C.: Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanot 19(43), 435609 (2008). https://doi.org/10.1088/0957-4484/19/43/435609

    Article  Google Scholar 

  29. 29.

    Banerjee, A.; Ghosh, C.; Chattopadhyay, K.; Minoura, H.; Sarkar, A.K.; Akiba, A.; Kamiya, A.; Endo, T.: Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films 496(1), 112–116 (2006). https://doi.org/10.1016/j.tsf.2005.08.258

    Article  Google Scholar 

  30. 30.

    Gu, X.; Zhu, L.; Cao, L.; Ye, Z.; He, H.; Chu, P.K.: Optical and electrical properties of ZnO: Al thin films synthesized by low-pressure pulsed laser deposition. Mater. Sci. Semicond. Process. 14(1), 48–51 (2011). https://doi.org/10.1016/j.mssp.2011.01.003

    Article  Google Scholar 

  31. 31.

    Hasim, S.N.F.; Hamid, M.A.A.; Shamsudin, R.; Jalar, A.: Synthesis and characterization of ZnO thin films by thermal evaporation. J. Phys. Chem. Solids 70(12), 1501–1504 (2009). https://doi.org/10.1016/j.jpcs.2009.09.013

    Article  Google Scholar 

  32. 32.

    Ravanbakhsh, A.; Rashchi, F.; Sohi, M.H.; Nekouei, R.K.: Synthesis of nanostructured zinc oxide thin films by anodic oxidation method. Adv. Mater. Res 829, 347–351 (2014). https://doi.org/10.4028/www.scientific.net/AMR.829.347

    Article  Google Scholar 

  33. 33.

    Zhao, J.; Hu, L.; Wang, Z.; Zhao, Y.; Liang, X.; Wang, M.: High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn. Appl. Surf. Sci. 229(1–4), 311–315 (2004). https://doi.org/10.1016/j.apsusc.2004.02.010

    Article  Google Scholar 

  34. 34.

    Kim, Y.-S.; Tai, W.-P.; Shu, S.-J.: Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin Solid Films 491(1–2), 153–160 (2005). https://doi.org/10.1016/j.tsf.2005.06.013

    Article  Google Scholar 

  35. 35.

    Mathew, J.P.; Varghese, G.; Mathew, J.: Effect of post-thermal annealing on the structural and optical properties of ZnO thin films prepared from a polymer precursor. Chin. Phys. B 21(7), 078104 (2012). https://doi.org/10.1088/1674-1056/21/7/078104

    Article  Google Scholar 

  36. 36.

    Sophocleous, M.: Electrical resistivity sensing methods and implications. In: EI-Shahat A (ed) Electrical resistivity and conductivity. INTECH, Crotia, 5 (2017)

  37. 37.

    Azqhandi, M.H.A.; Rajabi, F.; Keramati, M.: Synthesis of Cd doped ZnO/CNT nanocomposite by using microwave method: Photocatalytic behavior, adsorption and kinetic study. Res. Phys 7, 1106–1114 (2017). https://doi.org/10.1016/j.rinp.2017.02.033

    Article  Google Scholar 

  38. 38.

    McCluskey, M.D.; Jokela, S.: Defects in ZnO. J. Appl. Phys. 106(7), 10 (2009). https://doi.org/10.1063/1.3216464

    Article  Google Scholar 

  39. 39.

    Nagayasamy, N.; Gandhimathination, S.; Veerasamy, V.: The effect of ZnO thin film and its structural and optical properties prepared by sol-gel spin coating method. OJMetal 3(02), 8 (2013)

    Article  Google Scholar 

  40. 40.

    Banyamin, Z.Y.; Kelly, P.J.; West, G.; Boardman, J.: Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coat 4(4), 732–746 (2014). https://doi.org/10.3390/coatings4040732

    Article  Google Scholar 

  41. 41.

    Rodnyi, P.; Khodyuk, I.: Optical and luminescence properties of zinc oxide. Opt. Spectrosc. 111(5), 776–785 (2011). https://doi.org/10.1134/S0030400X11120216

    Article  Google Scholar 

  42. 42.

    Panigrahy, B.; Aslam, M.; Bahadur, D.: Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods. Nanot 23(11), 115601 (2012). https://doi.org/10.1088/0957-4484/23/11/115601

    Article  Google Scholar 

  43. 43.

    Leung, Y.; Chen, X.; Ng, A.; Guo, M.; Liu, F.; Djurišić, A.; Chan, W.; Shi, X.; Van Hove, M.: Green emission in ZnO nanostructures—examination of the roles of oxygen and zinc vacancies. Appl. Surf. Sci. 271, 202–209 (2013). https://doi.org/10.1016/j.apsusc.2013.01.160

    Article  Google Scholar 

  44. 44.

    Mann, J.R.; Gannon, M.K.; Fitzgibbons, T.C.; Detty, M.R.; Watson, D.F.: Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films. J. Phys. Chem. C 112(34), 13057–13061 (2008). https://doi.org/10.1021/jp803990b

    Article  Google Scholar 

  45. 45.

    Xu, L.; Kuang, W.; Liu, Z.; Xian, F.: Improvement of UV emission in ZnO thin film caused by a transition from polycrystalline to monocrystalline. Phys. B. Condens. Matter 583, 412010 (2020). https://doi.org/10.1016/j.physb.2020.412010

    Article  Google Scholar 

  46. 46.

    Kong, H.; Lee, H.-Y.: High performance flexible transparent conductive electrode based on ZnO/AgOx/ZnO multilayer. Thin Solid Films 696, 137759 (2020). https://doi.org/10.1016/j.tsf.2019.137759

    Article  Google Scholar 

  47. 47.

    Yu, Y.; Yao, B.; He, Y.; Cao, B.; Ma, W.; Chang, L.: Oxygen defect-rich In-doped ZnO nanostructure for enhanced visible light photocatalytic activity. Mater. Chem. Phys. 244, 122672 (2020). https://doi.org/10.1016/j.matchemphys.2020.122672

    Article  Google Scholar 

  48. 48.

    Sil, M.C.; Chen, L.-S.; Lai, C.-W.; Lee, Y.-H.; Chang, C.-C.; Chen, C.-M.: Enhancement of power conversion efficiency of dye-sensitized solar cells for indoor applications by using a highly responsive organic dye and tailoring the thickness of photoactive layer. J. Power Sources 479, 229095 (2020). https://doi.org/10.1016/j.jpowsour.2020.229095

    Article  Google Scholar 

  49. 49.

    Kouhestanian, E.; Mozaffari, S.A.; Ranjbar, M.; Amoli, H.S.: Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer. Org. Electron. 86, 105915 (2020). https://doi.org/10.1016/j.jpowsour.2020.229095

    Article  Google Scholar 

  50. 50.

    Zhang, Q.; Hou, S.; Li, C.: Titanium dioxide-coated zinc oxide nanorods as an efficient photoelectrode in dye-sensitized solar cells. Nanomaterials 10(8), 1598 (2020). https://doi.org/10.3390/nano10081598

    Article  Google Scholar 

  51. 51.

    Saputrina, T.T.; Iwantono, I.; Awitdrus, A.; Umar, A.A.: Performances of dye-sensitized solar cell (DSSC) with working electrode of aluminum-doped ZnO nanorods. Sci. Technol. Commun. J. 1(1), 1–7 (2020). https://doi.org/10.1016/j.jpcs.2010.08.020

    Article  Google Scholar 

  52. 52.

    Yang, S.; Sha, S.; Lu, H.; Wu, J.; Ma, J.; Wang, D.; Sheng, Z.: Electrodeposition of hierarchical zinc oxide nanostructures on metal meshes as photoanodes for flexible dye-sensitized solar cells. Colloids Surf. Physicochem. Eng. Aspects (2020). https://doi.org/10.1016/j.colsurfa.2020.124665

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express appreciation for the financial support of AUN/SEED-Net (Grant Number: 304.PBAHAN.6050390/J135), as well as support from the Electrical and Electronic Information Engineering department at the Toyohashi University of Technology (TUT), Prof Akihiro Wakahara of the Toyohashi University of Technology(TUT) for the photoluminescence measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Swee-Yong Pung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toe, M.Z., Pung, SY., Yaacob, K.A.B. et al. Effect of Dip-Coating Cycles on the Structural and Performance of ZnO Thin Film-based DSSC. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-021-05418-9

Download citation

Keywords

  • Dip coating
  • DSSC
  • FTO
  • thin film
  • ZnO