Parameter Optimization with Multi-criteria Decision-Making Methods in Rail Transport: A Case Study of Freight Wagon Bogie

Abstract

The high safety factor expected from transport vehicles results in high costs. Moreover, the environmental and financial concerns in transport vehicle technology make the minimization of production factors obligatory. This causes a decision problem between high safety and production at low cost. In this study, modeling and analysis with multi-criteria decision-making methods for freight wagon bogie operating with high safety and minimum cost were aimed. The decision problem was created considering the factors of safety, manufacturability and cost for three different materials, and the most appropriate material combination was determined for the bogie construction. In data production for the decision factors, the application of computer-aided engineering and chemical content of the materials were taken into consideration. The real tonnage prices of the related material were used for the cost criterion. TOPSIS, VIKOR and SAW, which are among the multi-criteria decision-making methods, were used for the solution of the decision problem. Fishbone, Cronbach’s alpha and regression methods were used for quality and reliability analysis. It was found that the solutions obtained from the chosen models validate each other. Together with the concept of economy and computer-aided engineering applications, its successful applicability to decision problems developed for freight wagons and providing a solution to them is the originality of this paper. According to the methods, the ideal solution was found as the material S355 for the pivot, S235 for the carrier and the bolster. According to reliability analysis, the data produced were found statistically sufficient and significant (Adj. R-Sq’s obtained above 95%).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jehanno, A.: High Speed Rail and Sustainability. The National Academies of Sciences, Engineering, and Medicine, Paris (2011)

  2. 2.

    Fang, J.; Gao, Y.; Sun, G.; Xu, C.; Li, Q.: Multiobjective robust design optimization of fatigue life for a truck cab. Reliab. Eng. Syst. Saf. 135, 1–8 (2015). https://doi.org/10.1016/j.ress.2014.10.007

    Article  Google Scholar 

  3. 3.

    Sirisalee, P.; Ashby, M.F.; Parks, G.T.; Clarkson, P.J.: Multi-criteria material selection in engineering design. Adv. Eng. Mater. 6(1–2), 84–92 (2004). https://doi.org/10.1002/adem.200300554

    Article  Google Scholar 

  4. 4.

    Chan, J.W.K.; Tong, T.K.L.: Multi-criteria material selections and end-of-life product strategy: grey relational analysis approach. Mater. Des. 28, 1539–1546 (2007). https://doi.org/10.1016/j.matdes.2006.02.016

    Article  Google Scholar 

  5. 5.

    Almoghathawi, Y.; Barker, K.; Rocco, C.M.; Nicholson, C.D.: A multi-criteria decision analysis approach for importance identification and ranking of network components. Reliab. Eng. Syst. Saf. 158, 142–151 (2017). https://doi.org/10.1016/j.ress.2016.10.007

    Article  Google Scholar 

  6. 6.

    Wang, Y.; Zhang, Y.; Yang, W.; Ji, H.: Selection of low-temperature phase-change materials for thermal energy storage based on the VIKOR method. Energy Technol. 3, 84–89 (2015). https://doi.org/10.1002/ente.201402098

    Article  Google Scholar 

  7. 7.

    Singh, T.; Patnaik, A.; Chauhan, R.; Chauhan, P.: Selection of brake friction materials using hybrid analytical hierarchy process and vise Kriterijumska Optimizacija Kompromisno Resenje approach. Polym. Compos. 37, 915–924 (2016). https://doi.org/10.1002/pc.24113

    Article  Google Scholar 

  8. 8.

    Shidpour, H.; Shahrokhi, M.; Bernard, A.: A multi-objective programming approach, integrated into the TOPSIS method, in order to optimize product design; in three-dimensional concurrent engineering. Comput. Ind. Eng. 64, 875–885 (2013). https://doi.org/10.1016/j.cie.2012.12.016

    Article  Google Scholar 

  9. 9.

    Calıskan, H.: Selection of boron based tribological hard coatings using multi-criteria decision making methods. Mater. Des. 50, 742–749 (2013). https://doi.org/10.1016/j.matdes.2013.03.059

    Article  Google Scholar 

  10. 10.

    Akadiri, P.O.; Olomolaiye, P.O.; Chinyio, E.A.: Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom. Constr. 30, 113–125 (2013). https://doi.org/10.1016/j.autcon.2012.10.004

    Article  Google Scholar 

  11. 11.

    Yazdani, M.; Payam, A.F.: A comparative study on material selection of microelectromechanical systems electrostatic actuators using Ashby, VIKOR and TOPSIS. Mater. Des. 65, 328–334 (2015). https://doi.org/10.1016/j.matdes.2014.09.004

    Article  Google Scholar 

  12. 12.

    Awasthi, A.; Omrani, H.; Gerber, P.: Investigating ideal-solution based multicriteria decision making techniques for sustainability evaluation of urban mobility projects. Transp. Res. Part A Policy Pract. 116, 247–259 (2018). https://doi.org/10.1016/j.tra.2018.06.007

    Article  Google Scholar 

  13. 13.

    Gupta, S.; Soni, U.; Kumar, G.: Green supplier selection using multi-criterion decision making under fuzzy environment: a case study in automotive industry. Comput. Ind. Eng. 136, 663–680 (2019). https://doi.org/10.1016/j.cie.2019.07.038

    Article  Google Scholar 

  14. 14.

    Lo, H.W.; Liou, J.J.H.; Huang, C.N.; Chuang, Y.C.: A novel failure mode and effect analysis model for machine tool risk analysis. Reliab. Eng. Syst. Saf. 183, 173–183 (2019). https://doi.org/10.1016/j.ress.2018.11.018

    Article  Google Scholar 

  15. 15.

    Janic, M.: Multicriteria evaluation of the high speed rail, transrapid maglev and hyperloop systems. Transp. Syst. Technol. 4, 5–31 (2018). https://doi.org/10.17816/transsyst2018445-31

    Article  Google Scholar 

  16. 16.

    Yang, T.; Chou, P.: Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Math. Comput. Simul. 68, 9–21 (2005). https://doi.org/10.1016/j.matcom.2004.09.004

    Article  MATH  Google Scholar 

  17. 17.

    TÜDEMSAŞ (Türkiye Demiryolu Makineleri Sanayii A.Ş.): Catalog. The Turkish National Railway System Council, İstanbul (2015)

  18. 18.

    Spiryagin, M.; Cole, C.; Sun, Y.Q.; McClanachan, M.; Spiryagin, V.; McSweeney, T.: Design and simulation of rail vehicles. CRC Press, Boca Raton (2014)

    Google Scholar 

  19. 19.

    Gerlici, J.; Nozhenko, O.; Cherniak, G.; Gorbunov, M.; Domin, R.; Lack, T.: The development of diagnostics methodological principles of the railway rolling stock on the basis of the analysis of dynamic vibration processes of the rail. MATEC Web Conf. 157, 03007 (2018). https://doi.org/10.1051/matecconf/201815703007

    Article  Google Scholar 

  20. 20.

    Grenčík, J.; Poprocký, R.; Galliková, J.; Volna, P.: Use of risk assessment methods in maintenance for more reliable rolling stock operation. MATEC Web Conf. 157, 1–11 (2018). https://doi.org/10.1051/matecconf/201815704002

    Article  Google Scholar 

  21. 21.

    Dižo, J.; Harušinec, J.; Blatnický, M.: Structural analysis of a modified freight wagon bogie frame. MATEC Web Conf. (2017). https://doi.org/10.1051/matecconf/201713400010

    Article  Google Scholar 

  22. 22.

    Seker, U.; Ciftci, I.; Hasirci, H.: The effect of alloying elements on surface roughness and cutting forces during machining of ductile iron. Mater. Des. 24, 47–51 (2003). https://doi.org/10.1016/s0261-3069(02)00081-x

    Article  Google Scholar 

  23. 23.

    Slavchev, S.; Maznichki, V.; Stoilov, V.; Purgic, S.: Comparative analysis of the results from static strength calculations and strength tests of an Y25Ls-K bogie frame. MATEC Web Conf. 133, 4–7 (2017). https://doi.org/10.1051/matecconf/201713303004

    Article  Google Scholar 

  24. 24.

    Dižo, J.; Blatnický, M.; Harušinec, J.; Falendysh, A.: Modification and analyses of structural properties of a goods wagon bogie frame. Diagnostyka 20, 41–48 (2019). https://doi.org/10.29354/diag/99853

    Article  Google Scholar 

  25. 25.

    European Committee for Standardization, T.E. 13749: Railway Applications—Wheelsets and Bogies—Method of Specifying the Structural Requirements of Bogie Frames (2011)

  26. 26.

    International Union of Railways (UIC) 515-4: Passenger Rolling Stock—Trailer Bogies—Running Gear—Bogie Running Gear—Bogie Frame Structure Strength Tests

  27. 27.

    MITTEL STEEL-Stainless Steel. http://turkish.stainlesssteel-sheetmetal.com/

  28. 28.

    Yilmaz, T.: Microstructure and Mechanical Properties of Hardox 400 Steels Welded by GMAW And FCAW Processes, Sakarya University, Master Thesis, Metal Education Department, pp. 18–19 (2010).

  29. 29.

    Leeco Steel. https://www.leecosteel.com/

  30. 30.

    Akalın Isıl İslem-Alloying Elements; Effects of Properties of Steel. http://www.akalinisilislem.com.tr/en/tablo_us.html

  31. 31.

    Unal, O.; Maleki, E.: Shot peening optimization with complex decision-making tool: multi criteria decision-making. Meas. J. Int. Meas. Confed. 125, 133–141 (2018). https://doi.org/10.1016/j.measurement.2018.04.077

    Article  Google Scholar 

  32. 32.

    Liu, D.; Wang, L.: Multi-attribute decision making with hesitant fuzzy information based on least common multiple principle and reference ideal method. Comput. Ind. Eng. 137, 106021 (2019). https://doi.org/10.1016/j.cie.2019.106021

    Article  Google Scholar 

  33. 33.

    Wang, G.; Duan, Y.: TOPSIS approach for multi-attribute decision making problems based on n-intuitionistic polygonal fuzzy sets description. Comput. Ind. Eng. 124, 573–581 (2018). https://doi.org/10.1016/j.cie.2018.07.038

    Article  Google Scholar 

  34. 34.

    Ma, J.; Harstvedt, J.D.; Jaradat, R.; Smith, B.: Sustainability driven multi-criteria project portfolio selection under uncertain decision-making environment. Comput. Ind. Eng. 140, 106236 (2020). https://doi.org/10.1016/j.cie.2019.106236

    Article  Google Scholar 

  35. 35.

    Khorshidi, R.; Hassani, A.: Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite. Mater. Des. 52, 999–1010 (2013). https://doi.org/10.1016/j.matdes.2013.06.011

    Article  Google Scholar 

  36. 36.

    Rafieyan, E.; Khorsand, R.; Ramezanpour, M.: An adaptive scheduling approach based on integrated best-worst and VIKOR for cloud computing. Comput. Ind. Eng. 140, 106272 (2020)

    Article  Google Scholar 

  37. 37.

    Ameri, A.A.; Pourghasemi, H.R.; Cerda, A.: Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: a comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Sci. Total Environ. 613–614, 1385–1400 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.210

    Article  Google Scholar 

  38. 38.

    Jahan, A.; Edwards, K.L.; Bahraminasab, M.: Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, 2nd edn. Butterworth-Heinemann, London, New York (2016)

    Google Scholar 

  39. 39.

    Alvali, G.T.: Application of Engineering and Economy Approaches to the Transport Technology: A Case Study of Freight Wagon Bogie. Karabuk University, Karabuk (2019)

    Google Scholar 

  40. 40.

    Ozdamar, K.: Paket Programlarla İstatistiksel Veri Analizi-1. Kaan Kitabevi, Eskişehir (2002)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Huseyin Cetin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cetin, M.H., Alvali, G.T. & Korkmaz, S. Parameter Optimization with Multi-criteria Decision-Making Methods in Rail Transport: A Case Study of Freight Wagon Bogie. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-021-05366-4

Download citation

Keywords

  • Transportation vehicles
  • Freight wagons
  • Bogie material
  • TOPSIS
  • VIKOR
  • SAW