Quality Control of Nano-food Packing Material for Grapes (Vitis vinifera) Based on ZnO and Polylactic Acid (PLA) biofilm

Abstract

Nano-food packaging, the emergence of latest technology based on nanomaterials, created enormous trust to the synthesis of novel packaging incorporated by zinc oxide nanoparticles (ZnO-NPs) in polylactic acid (PLA) polymer. The morphology and structure of biogenically fabricated ZnO-NPs by aloe barbadensis leaves extract were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transforms infrared spectroscopy. The fabricated ZnO-NPs were hexagonal in shape and 36.5 nm in size. The zinc oxide nanoparticles at concentration of 0.4% (w/w) and 4% (w/w) are incorporated in polylactic acid (PLA) by solution casting method. Loading of zinc oxide nanoparticle in PLA improved stability, film thickness and elongation. The Vitis vinifera fruit packed in the biofilm was observed for appearance, taste and freshness during ambient storage. ZnO-NPs/PLA packed fruit samples retained their original taste and freshness for 15 days in comparison with the reference samples packed in ZnO-NPs/ PLA (4%) at 400C. The biofilm did not affect the fruit Vitis vinifera quality attributes. The decay content, color change, browning index, gases and metal accumulation observations for Vitis vinifera fruit packed in ZnO-NPs/ PLA (4%) exhibited marvellous results. There were no significant differences between the materials tested (p > 0.05). Intercalation of ZnO-NPs was involved in the form of fillers in PLA by solvent casting method for shelf life augmentation of the selected delicate fruit, Vitis vinifera.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Kim, I., et al.: ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int. 17, 1–29 (2020)

    Article  Google Scholar 

  2. 2.

    Sanuja, S.; Agalya, A.; Umapathy, M.J.: Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int. J. Polym. Mater. Polym. Biomater. 63(14), 733–740 (2014)

    Article  Google Scholar 

  3. 3.

    Chaudhary, P.; Fatima, F.; Kumar, A.: Relevance of nanomaterials in food packaging and its advanced future prospects. J. Inorg. Organomet. Polym. Mater. 30(12), 5180–5192 (2020)

    Article  Google Scholar 

  4. 4.

    Sharma, R.; Jafari, S.M.; Sharma, S.: Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112, 107086 (2020)

    Article  Google Scholar 

  5. 5.

    Motelica, L., et al.: Smart food packaging designed by nanotechnological and drug delivery approaches. Coatings 10(9), 806 (2020)

    Article  Google Scholar 

  6. 6.

    Sun, J., et al. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocoll. 107, 105942 (2020)

    Article  Google Scholar 

  7. 7.

    Zambrano-Zaragoza, M.L., et al. Nano-films for food packaging. In: Hebbar, U. (ed.) Nano-Food Engineering. Springer, Cham, pp. 287–307 (2020)

    Google Scholar 

  8. 8.

    Bahrami, A., et al. Antimicrobial-loaded nanocarriers for food packaging applications. Adv. Coll. Interface Sci. 278, 102140 (2020)

    Article  Google Scholar 

  9. 9.

    Lee, J.Y., et al.: Structural packaging technique using biocompatible nanofiber with essential oil to prolong the shelf-life of fruit. J. Nanosci. Nanotechnol. 19(4), 2228–2231 (2019)

    Article  Google Scholar 

  10. 10.

    Zhang, L., et al.: Synthesis and characterization of antibacterial polylactic acid film incorporated with cinnamaldehyde inclusions for fruit packaging. Int. J. Biol. Macromol. 164, 4547–4555 (2020)

    Article  Google Scholar 

  11. 11.

    Zhang, B.Y., et al.: Assessment of carbon footprint of nano-packaging considering potential food waste reduction due to shelf life extension. Resour. Conserv. Recycl. 149, 322–331 (2019)

    Article  Google Scholar 

  12. 12.

    Kazemi, M.M., et al.: Application of modified packaging and nano ZnO for extending the shelf life of fresh pistachio. J. Food Process Eng. 43(12), e13548 (2020)

    Article  Google Scholar 

  13. 13.

    Wu, Y., et al.: Effect of nanocomposite-based packaging on microstructure and energy metabolism of Agaricus bisporus. Food Chem. 276, 790–796 (2019)

    Article  Google Scholar 

  14. 14.

    Dash, K.K., et al.: Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int. J. Biol. Macromol. 139, 449–458 (2019)

    Article  Google Scholar 

  15. 15.

    Mustafa, N.S.; Nagwa, S.Z.: Nano-technology applications in fruit trees orchards. J. Innov. Pharm. Biol. Sci. JIPBS 6, 36–45 (2019)

    Article  Google Scholar 

  16. 16.

    Lu, S., et al.: Heavy metal release from irradiated LDPE/nanometal composite films into food simulants. Food Packag. Shelf Life 26, 100571 (2020)

    Article  Google Scholar 

  17. 17.

    Jariyasakoolroj, P.; Leelaphiwat, P.; Harnkarnsujarit, N.: Advances in research and development of bioplastic for food packaging. J. Sci. Food Agric. 100(14), 5032–5045 (2020)

    Article  Google Scholar 

  18. 18.

    Kraśniewska, K., Pobiega, K., Gniewosz, M. Pullulan—biopolymer with potential for use as food packaging. Int. J. Food Eng. 15(9) (2019)

  19. 19.

    Zhao, X.; Cornish, K.; Vodovotz, Y.: Narrowing the gap for bioplastic use in food packaging: an update. Environ. Sci. Technol. 54(8), 4712–4732 (2020)

    Article  Google Scholar 

  20. 20.

    Wu, Y.-M., et al.: Influence of factors on release of antimicrobials from antimicrobial packaging materials. Critical Rev. Food Sci. Nutr. 58(7), 1108–1121 (2018)

    Article  Google Scholar 

  21. 21.

    Souza, V.G.L., et al.: Eco-friendly ZnO/chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings 10(2), 110 (2020)

    Article  Google Scholar 

  22. 22.

    de Vasconcelos Pina, H., et al.: Microbiological and cytotoxic perspectives of active PCL/ZnO film for food packaging. Mater. Res. Express 7(2), 025312 (2020)

    Article  Google Scholar 

  23. 23.

    Mania, S., et al.: The synergistic microbiological effects of industrial produced packaging polyethylene films incorporated with zinc nanoparticles. Polymers 12(5), 1198 (2020)

    Article  Google Scholar 

  24. 24.

    da Rosa, G.S., et al.: Development of biodegradable films with improved antioxidant properties based on the addition of carrageenan containing olive leaf extract for food packaging applications. J. Polym. Environ. 28(1), 123–130 (2020)

    Article  Google Scholar 

  25. 25.

    Handford, C.E., et al.: Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks. Trends Food Sci. Technol. 40(2), 226–241 (2014)

    Article  Google Scholar 

  26. 26.

    Shahbazi, Y.; Shavisi, N.: Current advancements in applications of chitosan based nano-metal oxides as food preservative materials. Nanomed. Res. J. 4(3), 122–129 (2019)

    Google Scholar 

  27. 27.

    Surwade, P., et al.: Impact of the changes in bacterial outer membrane structure on the anti-bacterial activity of zinc oxide nanoparticles. J. Nanopart. Res. 22(2), 43 (2020)

    Article  Google Scholar 

  28. 28.

    Azeredo, H.M.C., et al.: nanostructured antimicrobials in food packaging—recent advances. Biotechnol. J. 14(12), 1900068 (2019)

    Article  Google Scholar 

  29. 29.

    Kumar, S., et al.: Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon 5(6), e01867 (2019)

    Article  Google Scholar 

  30. 30.

    Marinello, F.; La Storia, A.; Mauriello, G.; Passeri, D.: Atomic Force microscopy techniques to investigate activated food packaging materials. Trends Food Sci. Technol. 87, 84 (2019)

    Article  Google Scholar 

  31. 31.

    Sani, I.K.; Pirsa, S.; Tağı, Ş: Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polym. Test. 79, 106004 (2019)

    Article  Google Scholar 

  32. 32.

    Raghunath, A.; Perumal, E.: Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int. J. Antimicrob. Agents 49(2), 137–152 (2017)

    Article  Google Scholar 

  33. 33.

    Díez-Pascual, A.M.; Díez-Vicente, A.L.: Poly (3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int. J. Mol. Sci 15, 10950–10973 (2014)

    Article  Google Scholar 

  34. 34.

    Therias, S.; Larché, J.F.; Bussière, P.O.; Gardette, J.L.; Murariu, M.; Dubois, P.: Photochemical behaviour of polylactide/ZnO nanocomposite films. Biomacromol 13, 3283–3291 (2012)

    Article  Google Scholar 

  35. 35.

    Kim, I.; Viswanathan, K.; Kasi, G.; Sadeghi, K.; Thanakkasaranee, S.; Seo, J.: Poly (lactic acid)/ZnO nanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials. Polymers 11(9), 1427 (2019)

    Article  Google Scholar 

  36. 36.

    Murariu, M.; Paint, Y.; Murariu, O.; Raquez, J.M.; Bonnaud, L.; Dubois, P.: Current progress in the production of PLA–ZnO nanocomposites: Beneficial effects of chain extender addition on key properties. J. Appl. Polym. Sci. 132, 42480 (2019)

    Google Scholar 

  37. 37.

    Li, X.; Hegyesi, N.; Zhang, Y.; Mao, Z.; Feng, X.; Wang, B.; Pukánszky, B.; Sui, X.: Poly (lactic acid)/lignin blends prepared with the Pickering emulsion template method. Eur. Polym. J. 110, 378–384 (2019)

    Article  Google Scholar 

  38. 38.

    Marra, A.; Silvestre, C.; Duraccio, D.; Cimmino, S.: Polylactic acid/zinc oxide biocomposite films for food packaging application. Int. J. Biol. Macromol. 88, 254–262 (2016)

    Article  Google Scholar 

  39. 39.

    Desai, A.P.; Desai, S.: UV spectroscopic method for determination of vitamin c (ascorbic acid) content in different fruits in south Gujarat region. Int. J. Environ. Sci. Nat. Resour. 21(2), 41–44 (2019)

    Google Scholar 

  40. 40.

    Rudnik, E.: Compostable Polymer Materials. Elsevier, Newnes (2019)

    Google Scholar 

  41. 41.

    De Silva, R.T.; Pasbakhsh, P.; Lee, S.M.; Kit, A.Y.: ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high-performance packaging films with improved mechanical and antimicrobial properties. Appl. Clay Sci. 111, 10–20 (2015)

    Article  Google Scholar 

  42. 42.

    Hameed, A.S.H.; Karthikeyan, C.; Ahamed, A.P.; Thajuddin, N.; Alharbi, N.S.; Alharbi, S.A.; Ravi, G.: In vitro antibacterial activity of ZnO and Nd-doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 6, 24312 (2016)

    Article  Google Scholar 

  43. 43.

    Aranha, M.; Saleem, M.; Mallick, B.C.; Jha, S.: The effects of interfacial potential on the antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 5, 9578 (2015)

    Article  Google Scholar 

  44. 44.

    Xing, Y.; Li, W.; Wang, Q.; Li, X.; Xu, Q.; Guo, X., et al.: Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules 24(9), 1695 (2019)

    Article  Google Scholar 

  45. 45.

    Emamifar, A.; Kadivar, M.; Shahidi, M.; Solimanian-Zad, S.A.B.I.H.E.: Effect of nanocomposite packaging containing Ag and ZnO on reducing pasteurization temperature of orange juice. J. Food Process. Preserv. 36(2), 104–112 (2012)

    Article  Google Scholar 

  46. 46.

    Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.: Antimicrobial food packaging based on sustainable bio-based materials for reducing Foodborne Pathogens: a review. Food Chem. 310, 125915 (2020)

    Article  Google Scholar 

  47. 47.

    Zhang, H.; Hortal, M.; Jordá-Beneyto, M.; Rosa, E.; Lara-Lledo, M.; Lorente, I.: ZnO-PLA nanocomposite coated paper for antimicrobial packaging application. LWT Food Sci. Technol. 78, 250–257 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the PCSIR laboratory Lahore in food samples analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amin Abid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Batool, M., Abid, A., Khurshid, S. et al. Quality Control of Nano-food Packing Material for Grapes (Vitis vinifera) Based on ZnO and Polylactic Acid (PLA) biofilm. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-021-05361-9

Download citation

Keywords

  • Vitis vinifera
  • Polylactic acid (PLA)
  • ZnO nanoparticle
  • Aloe barbadensis
  • Shelf life
  • Food packaging