Interval-Valued Picture Uncertain Linguistic Generalized Hamacher Aggregation Operators and Their Application in Multiple Attribute Decision-Making Process

Abstract

This paper aims to present the concept of interval-valued picture uncertain linguistic set (IVPULS), which composes the grade of truth, abstinence, and falsity in the form of a subset of the unit interval. IVPULS is an extensive capable theory to manage awkward and unreliable information. To explore the theory, we firstly stated some basic operational laws of them and investigated their properties. Based on these stated laws, we defined several weighted and ordered weighted generalized Hamacher aggregation (GHA) operators. Several special cases are deduced from the proposed operators. Furthermore, a multi-attribute decision-making approach algorithm is stated by using the concept of proposed GHA operators under the IVPULSs environment. The presented algorithm has been explored with a numerical example and compares their results with the existing studies to examine and improve the quality and feasibility of the discovered theory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  Google Scholar 

  2. 2.

    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  3. 3.

    Atanassov, K.T.; Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343–349 (1989)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Garg, H.; Kumar, K.: A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory. Artif. Intell. Rev. 53(1), 595–624 (2020)

    Article  Google Scholar 

  5. 5.

    Garg, H.; Kumar, K.: A novel possibility measure to interval-valued intuitionistic fuzzy set using connection number of set pair analysis and its applications. Neural Comput. Appl. 32(8), 3337–3348 (2020)

    Article  Google Scholar 

  6. 6.

    Wu, L.; Wei, G.; Wu, J.; Wei, C.: Some Interval-valued intuitionistic fuzzy dombi Heronian mean operators and their application for evaluating the ecological value of forest ecological tourism demonstration areas. Int. J. Environ. Res. Public Health 17(3), 829 (2020)

    Article  Google Scholar 

  7. 7.

    Dammak, F.; Baccour, L.; Alimi, A.M.: A new ranking method for TOPSIS and VIKOR under interval valued intuitionistic fuzzy sets and possibility measures. J. Intell. Fuzzy Syst. 1–11 (2020)

  8. 8.

    Alcantud, J.C.R.; Khameneh, A.Z.; Kilicman, A.: Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information. Inf. Sci. 514, 106–117 (2020)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Garg, H.: A new possibility degree measure for interval-valued q-rung orthopair fuzzy sets in decision-making. Int. J. Intell. Syst. 36(1), 526–557 (2021)

    Article  Google Scholar 

  10. 10.

    Cuong, B.C.: Picture fuzzy sets-first results. Part 2, Seminar Neuro-Fuzzy Systems with Applications; Institute of Mathematics: Hanoi, Vietnam (2013)

  11. 11.

    Cường, B.C.: Picture fuzzy sets. J. Comput. Sci. Cybern. 30(4), 409 (2014)

    Google Scholar 

  12. 12.

    Garg, H.: Some picture fuzzy aggregation operators and their applications to multicriteria decision-making. Arab. J. Sci. Eng. 42(12), 5275–5290 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Wei, G.: Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 17(4), 491–502 (2016)

    Article  Google Scholar 

  14. 14.

    Jan, N.; Ali, Z.; Mahmood, T.; Ullah, K.: Some generalized distance and similarity measures for picture hesitant fuzzy sets and their applications in building material recognition and multi-attribute decision making. Punjab Univ. J. Math. 51(7), 51–70 (2019)

    MathSciNet  Google Scholar 

  15. 15.

    Yang, Z.; Li, X.; Garg, H.; Peng, R.; Wu, S.; Huang, L.: Group decision algorithm for aged healthcare product purchase under q-rung picture normal fuzzy environment using Heronian mean operator. Int. J. Comput. Intell. Syst.s 13(1), 1176–1197 (2020)

    Article  Google Scholar 

  16. 16.

    Zadeh, L.A.: Linguistic variables, approximate reasoning and dispositions. Med. Inform. 8(3), 173–186 (1983)

    Article  Google Scholar 

  17. 17.

    Xu, Z.: Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 168(1–4), 171–184 (2004)

    Article  Google Scholar 

  18. 18.

    Liu, P.; Jin, F.: Methods for aggregating intuitionistic uncertain linguistic variables and their application to group decision making. Inf. Sci. 205, 58–71 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Liu, H.C.; Quan, M.Y.; Li, Z.; Wang, Z.L.: A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Inf. Sci. 486, 254–270 (2019)

    Article  Google Scholar 

  20. 20.

    Wei, G.: Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Kybernetes 46(10), 1777–1800 (2017)

    Article  Google Scholar 

  21. 21.

    Wu, S.J.; Wei, G.W.: Picture uncertain linguistic aggregation operators and their application to multiple attribute decision making. International Journal of Knowledge-Based and Intelligent Engineering Systems 21(4), 243–256 (2017)

    Article  Google Scholar 

  22. 22.

    Jin, Y.; Wu, H.; Merigó, J.M.; Peng, B.: Generalized Hamacher aggregation operators for intuitionistic uncertain linguistic sets: multiple attribute group decision making methods. Information 10(6), 206 (2019)

    Article  Google Scholar 

  23. 23.

    Ali, Z.; Mahmood, T.: Maclaurin symmetric mean operators and their applications in the environment of complex q-rung orthopair fuzzy sets. Comput. Appl. Math. 39, 161 (2020)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Garg, H.; Gwak, J.; Mahmood, T.; Ali, Z.: Power aggregation operators and VIKOR methods for complex q-rung orthopair fuzzy sets and their applications. Mathematics 8(4), 538 (2020)

    Article  Google Scholar 

  25. 25.

    Liu, P.; Ali, Z.; Mahmood, T.; Hassan, N.: Group decision-making using complex q-rung orthopair fuzzy Bonferroni mean. Int. J. Comput. Intell. Syst.13(1), 822–851 (2020)

    Article  Google Scholar 

  26. 26.

    Wang, L.; Li, N.: Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making. Int. J. Intell. Syst. 35(1), 150–183 (2020)

    Article  Google Scholar 

  27. 27.

    Peng, X.; Garg, H.: Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Comput. Ind. Eng. 119, 439–452 (2018)

    Article  Google Scholar 

  28. 28.

    Akram, M.; Bashir, A.; Garg, H.: Decision Making model under complex picture fuzzy Hamacher aggregation operators. Comput. Appl. Math. 39, 226 (2020). https://doi.org/10.1007/s40314-020-01251-2

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Garg, H.: Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process. Cogn. Comput. 12(6), 1313–1337 (2020)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Appendix

Appendix

Proof of Theorem 2

We shall prove the result by using principle of mathematical induction on “n.”

For n = 1 with \({\Omega }_{W-1}=1\) and \({\Omega }_{W-1}^{{\prime}}=1\), then Eq. (36), such that

$$\begin{aligned} & IVPULGHHWA\left({\mathfrak{T}}_{IPU-1},{\mathfrak{T}}_{IPU-2},\dots ,{\mathfrak{T}}_{IPU-n}\right)\\ & \quad = {\mathfrak{T}}_{IPU}=\left(\begin{array}{c}\left[{\mathcal{L}}_{{\alpha }_{1}},{\mathcal{L}}_{{\beta }_{1}}\right],\\ \left(\left[{\mu }_{{\mathfrak{Q}}_{LG-1}}^{-},{\mu }_{{\mathfrak{Q}}_{UG-1}}^{+}\right],\left[{\psi }_{{\mathfrak{Q}}_{LG-1}}^{-},{\psi }_{{\mathfrak{Q}}_{UG-1}}^{+}\right],\left[{\eta }_{{\mathfrak{Q}}_{LG-1}}^{-},{\eta }_{{\mathfrak{Q}}_{UG-1}}^{+}\right]\right)\end{array}\right), \end{aligned}$$

then the right-hand side of Eq. (36), we have

$$=\left(\begin{array}{c}\left[{\mathcal{L}}_{{\alpha }_{1}},{\mathcal{L}}_{{\beta }_{1}}\right],\\ \left(\begin{array}{c}\left[\begin{array}{c}\left(\frac{\vartheta {\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}-\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}+\left({\vartheta }^{2}-1\right)\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)+\left(\vartheta -1\right)\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}-\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}\right),\\ \left(\frac{\vartheta {\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}-\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}+\left({\vartheta }^{2}-1\right)\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)+\left(\vartheta -1\right)\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}-\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}\right)\end{array}\right],\\ \left[\begin{array}{c}\frac{{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}+\left({\vartheta }^{2}-1\right){\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}-{\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}+\left({\vartheta }^{2}-1\right){\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}-{\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}},\\ \frac{{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}+\left({\vartheta }^{2}-1\right){\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}-{\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}+\left({\vartheta }^{2}-1\right){\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}-{\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}\end{array}\right],\\ \left[\begin{array}{c}\frac{{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}+\left({\vartheta }^{2}-1\right)\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}-\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}+\left({\vartheta }^{2}-1\right)\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}-\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{\frac{1}{{\Upsilon }_{SC}}}},\\ \frac{{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}+\left({\vartheta }^{2}-1\right)\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}-\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}+\left({\vartheta }^{2}-1\right)\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}-\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}\end{array}\right]\end{array}\right)\end{array}\right)$$
$$=\left(\begin{array}{c}\left[{\mathcal{L}}_{{\alpha }_{1}},{\mathcal{L}}_{{\beta }_{1}}\right],\\ \left(\left[{\mu }_{{\mathfrak{Q}}_{LG-1}}^{-},{\mu }_{{\mathfrak{Q}}_{UG-1}}^{+}\right],\left[{\psi }_{{\mathfrak{Q}}_{LG-1}}^{-},{\psi }_{{\mathfrak{Q}}_{UG-1}}^{+}\right],\left[{\eta }_{{\mathfrak{Q}}_{LG-1}}^{-},{\eta }_{{\mathfrak{Q}}_{UG-1}}^{+}\right]\right)\end{array}\right)$$

For \({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}={\left(1+\left(\vartheta -1\right)\left(1-{\mu }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)\right)}^{{\Upsilon }_{SC}}+\left({\vartheta }^{2}-1\right){\mu }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{{{-}{\Upsilon }_{SC}}}\) and \({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}={\left(1+\left(\vartheta -1\right)\left(1-{\mu }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)\right)}^{{\Upsilon }_{SC}}+\left({\vartheta }^{2}-1\right){\mu }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{{{+}{\Upsilon }_{SC}}}\), \({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}={\left(1+\left(\vartheta -1\right)\left(1-{\psi }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)\right)}^{{\Upsilon }_{SC}}-{\psi }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{{{-}{\Upsilon }_{SC}}}\) and \({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}={\left(1+\left(\vartheta -1\right)\left(1-{\psi }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)\right)}^{{\Upsilon }_{SC}}-{\psi }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{{{+}{\Upsilon }_{SC}}}\), \(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}={\left(1+\left(\vartheta -1\right)\left(1-{\eta }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)\right)}^{{\Upsilon }_{SC}}-{\eta }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{{{-}{\Upsilon }_{SC}}}\) and \(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}={\left(1+\left(\vartheta -1\right)\left(1-{\eta }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)\right)}^{{\Upsilon }_{SC}}-{\eta }_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{{{+}{\Upsilon }_{SC}}}\). For \(n=1\), Eq. (36) is hold true.

Additionally, we can check for \(n=k\), we have

$$IVPULGHHWA\left({\mathfrak{T}}_{IPU-1},{\mathfrak{T}}_{IPU-2},\dots ,{\mathfrak{T}}_{IPU-n}\right)$$

\(=\left(\begin{array}{c}\left[{\mathcal{L}}_{\sum_{i=1}^{k}{\Omega }_{W-i}{\alpha }_{O\left(i\right)}},{\mathcal{L}}_{\sum_{i=1}^{k}{\Omega }_{W-i}{\beta }_{O\left(i\right)}}\right],\\ \left(\begin{array}{c}\left[\begin{array}{c}\left(\frac{\vartheta {\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)+\left(\vartheta -1\right)\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}\right),\\ \left(\frac{\vartheta {\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)+\left(\vartheta -1\right)\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}+\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)}\right)\end{array}\right],\\ \left[\begin{array}{c}\frac{{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}},\\ \frac{{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}\end{array}\right],\\ \left[\begin{array}{c}\frac{{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}},\\ \frac{{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}\end{array}\right]\end{array}\right)\end{array}\right)\);

We can prove for \(n=k+1\), such that

$$IVPULGHHWA\left({\mathfrak{T}}_{IPU-1},{\mathfrak{T}}_{IPU-2},\dots ,{\mathfrak{T}}_{IPU-k+1}\right)$$
$$=IVPULGHHWA\left({\mathfrak{T}}_{IPU-1},{\mathfrak{T}}_{IPU-2},\dots ,{\mathfrak{T}}_{IPU-k}\right){\oplus }_{IPU}{\Omega }_{W-k+1}{\mathfrak{T}}_{IPU-k+1}$$
$$=\left(\begin{array}{c}\left[{\mathcal{L}}_{\sum_{i=1}^{k}{\Omega }_{W-i}{\alpha }_{O\left(i\right)}},{\mathcal{L}}_{\sum_{i=1}^{k}{\Omega }_{W-i}{\beta }_{O\left(i\right)}}\right],\\ \left(\begin{array}{c}\left[\begin{array}{c}\left(\frac{\vartheta {\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)+\left(\vartheta -1\right)\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}\right),\\ \left(\frac{\vartheta {\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)+\left(\vartheta -1\right)\left(\prod_{i=1}^{k}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}+\prod_{i=1}^{k}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)}\right)\end{array}\right],\\ \left[\begin{array}{c}\frac{{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}},\\ \frac{{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{k}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}\end{array}\right],\\ \left[\begin{array}{c}\frac{{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}},\\ \frac{{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{k}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{k}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}\end{array}\right]\end{array}\right)\end{array}\right){\oplus }_{IPU}$$
$$\left(\begin{array}{c}\left[{\mathcal{L}}_{{\alpha }_{k+1}},{\mathcal{L}}_{{\beta }_{k+1}}\right],\\ \left(\begin{array}{c}\left[\begin{array}{c}\frac{{\left(1+\left(\vartheta -1\right){\mu }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)}^{{\Omega }_{W-k+1}}-{\left(1-{\mu }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)}^{{\Omega }_{W-k+1}}}{{\left(1+\left(\vartheta -1\right){\mu }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)}^{{\Omega }_{W-k+1}}+\left(\vartheta -1\right){\left(1-{\mu }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)}^{{\Omega }_{W-k+1}}},\\ \frac{{\left(1+\left(\vartheta -1\right){\mu }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)}^{{\Omega }_{W-k+1}}-{\left(1-{\mu }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)}^{{\Omega }_{W-k+1}}}{{\left(1+\left(\vartheta -1\right){\mu }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)}^{{\Omega }_{W-k+1}}+\left(\vartheta -1\right){\left(1-{\mu }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)}^{{\Omega }_{W-k+1}}}\end{array}\right],\\ \left[\begin{array}{c}\frac{\vartheta {\left({\psi }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)}^{{\Omega }_{W-k+1}}}{{\left(1+\left(\vartheta -1\right)\left(1-{\psi }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)\right)}^{{\Omega }_{W-k+1}}+\left(\vartheta -1\right){\left({\psi }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)}^{{\Omega }_{W-k+1}}},\\ \frac{\vartheta {\left({\psi }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)}^{{\Omega }_{W-k+1}}}{{\left(1+\left(\vartheta -1\right)\left(1-{\psi }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)\right)}^{{\Omega }_{W-k+1}}+\left(\vartheta -1\right){\left({\psi }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)}^{{\Omega }_{W-k+1}}}\end{array}\right],\left[\begin{array}{c}\frac{\vartheta {\left({\eta }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)}^{{\Omega }_{W-k+1}}}{{\left(1+\left(\vartheta -1\right)\left(1-{\eta }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)\right)}^{{\Omega }_{W-k+1}}+\left(\vartheta -1\right){\left({\eta }_{{\mathfrak{Q}}_{LG-k+1}}^{-}\right)}^{{\Omega }_{W-k+1}}},\\ \frac{\vartheta {\left({\eta }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)}^{{\Omega }_{W-k+1}}}{{\left(1+\left(\vartheta -1\right)\left(1-{\eta }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)\right)}^{{\Omega }_{W-k+1}}+\left(\vartheta -1\right){\left({\eta }_{{\mathfrak{Q}}_{LG-k+1}}^{+}\right)}^{{\Omega }_{W-k+1}}}\end{array}\right]\\ \end{array}\right)\end{array}\right).$$
$$IVPULGHHWA\left({\mathfrak{T}}_{IPU-1},{\mathfrak{T}}_{IPU-2},\dots ,{\mathfrak{T}}_{IPU-n}\right)=$$
$$=\left(\begin{array}{c}\left[{\mathcal{L}}_{\sum_{i=1}^{n}{\Omega }_{W-i}{\alpha }_{O\left(i\right)}},{\mathcal{L}}_{\sum_{i=1}^{n}{\Omega }_{W-i}{\beta }_{O\left(i\right)}}\right],\\ \left(\begin{array}{c}\left[\begin{array}{c}\left(\frac{\vartheta {\left(\prod_{i=1}^{n}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{\left(\prod_{i=1}^{n}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)+\left(\vartheta -1\right)\left(\prod_{i=1}^{n}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\prod_{i=1}^{n}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}\right),\\ \left(\frac{\vartheta {\left(\prod_{i=1}^{n}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{\left(\prod_{i=1}^{n}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)+\left(\vartheta -1\right)\left(\prod_{i=1}^{n}{\left({\widehat{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}+\prod_{i=1}^{n}{\left(\bar{\bar{\mu }}_{{\mathfrak{Q}}_{LG-i}}^{+}\right)}^{{\Omega }_{W-i}}\right)}\right)\end{array}\right],\\ \left[\begin{array}{c}\frac{{\left(\prod_{i=1}^{n}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{n}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{n}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{n}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}},\\ \frac{{\left(\prod_{i=1}^{n}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{n}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{n}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{n}{\left({\widehat{\psi }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left({\bar{\bar{\psi }}}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}\end{array}\right],\\ \left[\begin{array}{c}\frac{{\left(\prod_{i=1}^{n}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{n}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{n}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{n}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{-}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}},\\ \frac{{\left(\prod_{i=1}^{n}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}-{\left(\prod_{i=1}^{n}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}{{\left(\prod_{i=1}^{n}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}+\left({\vartheta }^{2}-1\right)\prod_{i=1}^{n}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}+\left(\vartheta -1\right){\left(\prod_{i=1}^{n}{\left({\widehat{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}-\prod_{i=1}^{n}{\left(\bar{\bar{\eta }}_{{\mathfrak{Q}}_{LG-O\left(i\right)}}^{+}\right)}^{{\Omega }_{W-i}}\right)}^{\frac{1}{{\Upsilon }_{SC}}}}\end{array}\right]\end{array}\right)\end{array}\right)$$

Therefore, Eq. (36) is also holds for \(n=k+1\). Hence, from the above two conditions, we get Eq. (36) is hold true for \(n\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Ali, Z. & Mahmood, T. Interval-Valued Picture Uncertain Linguistic Generalized Hamacher Aggregation Operators and Their Application in Multiple Attribute Decision-Making Process. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-020-05313-9

Download citation

Keywords

  • Interval-valued picture uncertain linguistic sets
  • Generalized Hamacher aggregation operators
  • Multi-attribute decision-making