Hierarchical Control of DC Motor Coupled with Cuk Converter Combining Differential Flatness and Sliding Mode Control

Abstract

This paper proposes a hierarchical control law for DC motor fed by DC–DC power Cuk Converter. The control is divided into two parts: Firstly, the property of differential flatness associated with the mathematical model of the DC motor is studied to design a robust control that achieves the task of tracking the reference angular speed trajectory for the motor. It also gives the voltage profile \(\vartheta \) which must be followed by the Cuk converter. The second independent controller, based on cascade control, is proposed for the Cuk converter, which allows the converter output voltage to follow the specified trajectory \(\vartheta \). Sliding mode control is used in the inner loop, whereas proportional integral control is used in the proposed cascade controller’s outer loop. Numerical simulation of the hierarchical control technique is carried out in MATLAB/Simulink, and results under parametric variation show robustness. Finally, a comparison is drawn for speed trajectory tracking by the DC motor coupled with DC–DC buck and Cuk converter to show the performance improvement in case of using Cuk converter for angular speed trajectory tacking of a DC motor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Sen, P.C.: Electric motor drives and control-past, present, and future. IEEE Trans. Ind. Electron. 37(6), 562–575 (1990)

    Article  Google Scholar 

  2. 2.

    Lin, D.; Wang, X.; Nian, F.; Zhang, Y.: Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 73(16–18), 2873–2881 (2010)

    Article  Google Scholar 

  3. 3.

    de Jesús Rubio, J.: Robust feedback linearization for nonlinear processes control. ISA Trans. 74, 155–164 (2018)

    Article  Google Scholar 

  4. 4.

    Wang, X.; Zhang, X.; Ma, C.: Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn. 69(1–2), 511–517 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Harrouz, A.; Becheri, H.; Colak, I.; Kayisli, K.: Backstepping control of a separately excited dc motor. Electr. Eng. 100(3), 1393–1403 (2018)

    Article  Google Scholar 

  6. 6.

    Yao, J.; Jiao, Z.; Ma, D.: Adaptive robust control of dc motors with extended state observer. IEEE Trans. Ind. Electron. 61(7), 3630–3637 (2013)

    Article  Google Scholar 

  7. 7.

    Wang, Y.; Zhang, X.; Yuan, X.; Liu, G.: Position-sensorless hybrid sliding-mode control of electric vehicles with brushless dc motor. IEEE Trans. Veh. Technol. 60(2), 421–432 (2010)

    Article  Google Scholar 

  8. 8.

    Ahmad, M.; Ismail, R.R.; Ramli, M.: Control strategy of buck converter driven dc motor: a comparative assessment. Aust. J. Basic Appl. Sci. 4(10), 4893–4903 (2010)

    Google Scholar 

  9. 9.

    Huang, R.; Mazumder, S.K.: A soft-switching scheme for an isolated dc/dc converter with pulsating dc output for a three-phase high-frequency-link pwm converter. IEEE Trans. Power Electron. 24(10), 2276–2288 (2009)

    Article  Google Scholar 

  10. 10.

    Goudarzian, A.; Khosravi, A.: Application of dc/dc ćuk converter as a soft starter for battery chargers based on double-loop control strategy. Int. J. Circuit Theory Appl. 47(5), 753–781 (2019)

    Article  Google Scholar 

  11. 11.

    Lyshevski, S.E.: Electromechanical Systems, Electric Machines, and Applied Mechatronics. CRC Press, Boca Raton (2018)

    Google Scholar 

  12. 12.

    Linares-Flores, J.; Sira-Ramirez, H.: Dc motor velocity control through a dc-to-dc power converter. In: Decision and Control, 2004. CDC. In: 43rd IEEE Conference on, vol. 5, pp. 5297–5302. IEEE (2004)

  13. 13.

    Linares-Flores, J.; Sira-Ramirez, H.: A smooth starter for a dc machine: a flatness based approach. In: Electrical and Electronics Engineering, 2004.(ICEEE). In: 1st International Conference on, pp. 589–594. IEEE (2004)

  14. 14.

    El Fadil, H.; Giri, F.: Accounting of dc-dc power converter dynamics in dc motor velocity adaptive control. In: Proceedings of the IEEE International Conference on Control Applications, pp. 3157–3162 (2006)

  15. 15.

    Antritter, F.; Maurer, P.; Reger, J.: Flatness based control of a buck-converter driven dc motor. IFAC Proc. Vol. 39(16), 36–41 (2006)

    Article  Google Scholar 

  16. 16.

    Sureshkumar, R.; Ganeshkumar, S.: Comparative study of proportional integral and backstepping controller for buck converter. In: 2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), pp. 375–379. IEEE (2011)

  17. 17.

    Chen, Z.: Pi and sliding mode control of a cuk converter. IEEE Trans. Power Electron. 27(8), 3695–3703 (2012)

    Article  Google Scholar 

  18. 18.

    Chen, Z.; Gao, W.; Hu, J.; Ye, X.: Closed-loop analysis and cascade control of a nonminimum phase boost converter. IEEE Trans. Power Electron. 26(4), 1237–1252 (2011)

    Article  Google Scholar 

  19. 19.

    Kumar, J.; Kumar, V.; Rana, K.: Design of robust fractional order fuzzy sliding mode pid controller for two link robotic manipulator system. J. Intell. Fuzzy Syst. 35(5), 5301–5315 (2018)

    Article  Google Scholar 

  20. 20.

    Liu, J.; Gao, Y.; Yin, Y.; Wang, J.; Luo, W.; Sun, G.: Sliding mode control of dc/dc power converters. In: Sliding Mode Control Methodology in the Applications of Industrial Power Systems, pp. 157–184. Springer (2020)

  21. 21.

    Sel, A.; Güneş, U.; Kasnakoğlu, C.: Design of output feedback sliding mode controller for sepic converter for robustness. Int. J. Electron. 107(2), 239–249 (2020)

    Article  Google Scholar 

  22. 22.

    Silva-Ortigoza, R.; Hernández-Guzmán, V.M.; Antonio-Cruz, M.; Munoz-Carrillo, D.: Dc/dc buck power converter as a smooth starter for a dc motor based on a hierarchical control. IEEE Trans. Power Electron. 30(2), 1076–1084 (2015)

    Article  Google Scholar 

  23. 23.

    García-Sánchez, J.R.; Hernández-Márquez, E.; Ramárez-Morales, J.; Marciano-Melchor, M.; Marcelino-Aranda, M.; Taud, H.; Silva-Ortigoza, R.: A robust differential flatness-based tracking control for the mimo dc/dc boost converter-inverter-dc motor system: experimental results. IEEE Access 7, 84497–84505 (2019)

  24. 24.

    Rauf, A.; Yang, J.; Madonski, R.; Li, S.; Wang, Z.: Sliding mode control of converter-fed dc motor with mismatched load torque compensation. In: 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), pp. 653–657. IEEE (2019)

  25. 25.

    Linares-Flores, J.; Sira-Ramirez, H.; Reger, J.; Silva-Ortigoza, R.: An exact tracking error dynamics passive output feedback controller for a buck-boost-converter driven dc motor. In: International Power Electronics Congress, 10th IEEE, pp. 1–5. IEEE (2006)

  26. 26.

    Roy, T.; Paul, L;, Sarkar, M.; Pervej, M.; Tumpa, F.: Adaptive controller design for speed control of dc motors driven by a dc-dc buck converter. In: 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 100–105. IEEE (2017)

  27. 27.

    Linares-Flores, J.; Reger, J.; Sira-Ramárez, H.: Load torque estimation and passivity-based control of a boost-converter/dc-motor combination. IEEE Trans. Control Syst. Technol. 18(6), 1398–1405 (2010)

    Google Scholar 

  28. 28.

    Wu, H.; Zhang, L.; Yang, J.; Li, S.: Model predictive control for dc-dc buck power converter-dc motor system with uncertainties using a gpi observer. In: 2017 36th Chinese Control Conference (CCC), pp. 4906–4911. IEEE (2017)

  29. 29.

    Yang, J.; Wu, H.; Hu, L.; Li, S.: Robust predictive speed regulation of converter-driven dc motors via a discrete-time reduced-order gpio. IEEE Trans. Ind. Electron. 66(10), 7893–7903 (2018)

    Article  Google Scholar 

  30. 30.

    Sira-Ramirez, H.; Agrawal, S.K.: Differentially Flat Systems. CRC Press, Boca Raton (2004)

    Google Scholar 

  31. 31.

    Sira-Ramirez, H.J.; Silva-Ortigoza, R.: Control Design Techniques in Power Electronics Devices. Springer, Berlin (2006)

    Google Scholar 

  32. 32.

    Polsky, T.; Horen, Y.; Bronshtein, S.; Baimel, D.: Transient and steady-state analysis of a sepic converter by an average state-space modelling. In: 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), pp. 211–215. IEEE (2018)

  33. 33.

    Sira-Ramirez, H.J.; Silva-Ortigoza, R.: Sliding mode \(\Sigma \)-\(\Delta \) modulation control of the boost converter. Asian J. Control 7(4), 349–355 (2005)

    Article  Google Scholar 

  34. 34.

    Guldemir, H.: Study of sliding mode control of dc-dc buck converter. Energy Power Eng. 3(04), 401 (2011)

    Article  Google Scholar 

  35. 35.

    Dragan, F.; Curiac, D.; Iercan, D.; Filip, I.: Sliding mode control for a buck converter. In: WSEAS international conference on Automatic control, modelling and simulation, p. 162165. Citeseer (2007)

Download references

Acknowledgements

The authors acknowledge the support provided by the King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia through the funded project # DF191004. Dr. Abido would also like to acknowledge the funding support provided by King Abdullah City for Atomic and Renewable Energy (K.A. CARE), Energy Research & Innovation Center (ERIC), KFUPM, Saudi Arabia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Abido.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arshad, M.H., Abido, M.A. Hierarchical Control of DC Motor Coupled with Cuk Converter Combining Differential Flatness and Sliding Mode Control. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-020-05305-9

Download citation

Keywords

  • DC motor
  • Differential flatness
  • Sliding mode control (SMC)
  • Lyapunov stability
  • Cuk converter
  • Hierarchical control