Numerical Study of Nanofluid Transport Subjected to the Collective Approach of Generalized Slip Condition and Radiative Phenomenon

Abstract

This study investigates theoretically, the effects of axisymmetric magnetohydrodynamic stagnation point flow of nanofluid over a surface lubricated by taking the general slip condition: The application perspective in biological farming and irrigation system. The impacts of radiation, chemical reaction, thermophoresis, and Brownian motions are further taken into account. In this model, PDEs are appropriately transformed into dimensionless ODEs. A numeric techniques BVP4C is implemented for the solutions of all the involved transport variables. Influences by the physical significance parameters on the velocity, temperature, and concentration profiles are studied. Physically, the effects of the skin friction coefficient on the heat transfer and concentration rate at the surface are analyzed. The Lorentz force has visible diversity on the flow properties. A transition of slip to no-slip condition is evident in the present study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Franciso, ASME, FED 231/MD, 66, pp. 99–105 (1995)

  2. 2.

    Buongiorno, J.: Convective transport in nanofluid. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  3. 3.

    Khan, W.A.; Pop, I.: Boundary layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  Google Scholar 

  4. 4.

    Makinde, O.D.; Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary conditions. Int. J. Therm. Sci. 50, 1326–1332 (2011)

    Article  Google Scholar 

  5. 5.

    Mustafa, M.; Hayat, T.; Obadait, S.: Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions. Int. J. Numer. Methods Heat Fluid Flow 23(6), 945–959 (2013)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Halim, N.A.; Noor, N.F.M.: Analytical solution for Maxwell nanofluid boundary layer flow over a stretching surface. AIP Adv. 1682, 020006 (2015)

    Google Scholar 

  7. 7.

    Daba, M.; Devaraj, P.: Unsteady boundary layer flow of a nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation. Thermophys. Aerodyn. 23(3), 403–413 (2016)

    Article  Google Scholar 

  8. 8.

    Ferdows, M.; Khan, M.S.; Alam, M.M.; Afify, A.A.: MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet. Acta Univ. Sapientiae Math. 9(1), 140–161 (2017)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Sheikholeslami, M.: CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J. Mol. Liq. 249, 921–929 (2018)

    Article  Google Scholar 

  10. 10.

    Das, K.; Sharma, R.P.; Sarkar, A.: Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet. J. Comput. Des. Eng. 3, 330–336 (2016)

    Google Scholar 

  11. 11.

    Eldabe, N.T.; Moatimid, G.M.; Ali, H.S.: Magnetohydrodynamic flow of non-Newtonian visco-elastic fluid through a porous medium near an accelerated plate. Can. J. Phys. 81(11), 1249–1269 (2003)

    Article  Google Scholar 

  12. 12.

    Eldabe, N.T.; Sallam, S.N.: Non-Darcy Couette flow through a porous medium of magnetohydro-dynamic visco-elastic fluid with heat and mass transfer. Can. J. Phy. 83(12), 1243–1265 (2005)

    Article  Google Scholar 

  13. 13.

    Hameed, M.; Nadeem, S.: Unsteady MHD flow of a non-Newtonian fluid on a porous plate. J. Math. Anal. Appl. 325(1), 724–733 (2007)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ullah, I.; Shafie, S.; Khan, I.: Effects of slip condition and Newtonian heating on MHD flow of Casson fluid over a nonlinearly stretching sheet saturated in a porous medium. J. King Saud Univ. Sci. 29, 250–259 (2017)

    Article  Google Scholar 

  15. 15.

    Shehzad, S.A.; Hayat, T.; Alsaedi, A.: Influence of convective heat and mass conditions in MHD flow of nanofluid. Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 465–474 (2015)

    Google Scholar 

  16. 16.

    Hayat, T.; Muhammad, T.; Alsaeedi, A.; Alhuthali, M.S.: Magnetohydrodynami three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J. Magn. Magn. Mater. 385, 222–229 (2015)

    Article  Google Scholar 

  17. 17.

    Azimi, M.; Riazi, R.: MHD copper-water nanofluid flow and heat transfer through convergent-divergent channel. J. Mech. Sci. Technol. 30(10), 4679–4686 (2016)

    Article  Google Scholar 

  18. 18.

    Azimi, M.; Riazi, R.: MHD unsteady GO-water-squeezing nanofluid flow-heat and mass transfer between two infinite parallel moving plates: analytical investigation. Sadhana 42(3), 335–341 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Gireesha, B.J.; Mahanthesh, B.; Thammanna, G.T.; Sampathkumar, P.B.: Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. J. Mol. Liq. 256, 139–147 (2018)

    Article  Google Scholar 

  20. 20.

    Mahanthesh, B.; Shashikumar, N.S.; Gireesha, B.J.; Animasaun, I.L.: Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with nonlinear radiative heat. J. Comput. Des. Eng. 6(4), 551–561 (2019)

    Google Scholar 

  21. 21.

    Mahanthesh, B.; Shehzad, S.A.; Ambreen, T.; Khan, S.U.: Significance of Joule heating and viscous heating on heat transport of MoS2–Ag hybrid nanofluid past an isothermal wedge. J. Therm. Anal. Calorim., 1–9 (2020)

  22. 22.

    Kumar, P.B.; Sampath, B.; Mahanthesh, B.; Gireesha, B.J.; Shehzad, S.A.: Quadratic convective flow of radiated nano-Jeffrey liquid subject to multiple convective conditions and Cattaneo-Christov double diffusion. Appl. Math. Mech. 39(9), 1311–1326 (2018)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Mahanthesh, B.; Giulio, L.; Feteh, M.O.; Isac, L.A.: Significance of exponential space-and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. J. Therm. Anal. Calorim., 1–8 (2019)

  24. 24.

    Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S.R.: Unsteady three-dimensional MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating. J. Assoc. Arab Univ. Basic Appl. Sci. 23, 75–84 (2017)

    Google Scholar 

  25. 25.

    Abbas, S.Z.; Khan, W.A.; Waqas, M.; Irfan, M.; Asghar, Z.: Exploring the features for flow of Oldroyd-B liquid film subjected to rotating disk with homogeneous/heterogeneous processes. Comput. Methods Prog. Biomed. 189, 105323 (2020)

    Article  Google Scholar 

  26. 26.

    Abbas, S.Z.; Khan, W.A.; Kadry, S.; Khan, M.I.; Waqas, M.; Khan, M.I.: Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity. Comput. Methods Prog. Biomed. 190, 105363 (2020)

    Article  Google Scholar 

  27. 27.

    Abbas, S.Z.; Khan, W.A.; Gulzar, M.M.; Hayat, T.; Waqas, M.; Asghar, Z.: Magnetic field influence in three-dimensional rotating micropolar nanoliquid with convective conditions. Comput. Methods Prog. Biomed. 189, 105324 (2020)

    Article  Google Scholar 

  28. 28.

    Abbas, S.Z.; Khan, M.I.; Kadry, S.; Khan, W.A.; Israr-Ur-Rehman, M.; Waqas, M.: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy. Comput. Methods Prog. Biomed. 190, 105362 (2020)

    Article  Google Scholar 

  29. 29.

    Khan, W.A.; Waqas, M.; Kadry, S.; Asghar, Z.; Abbas, S.Z.; Irfan, M.: On the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditions. Comput. Methods Prog. Biomed. 190, 105347 (2020)

    Article  Google Scholar 

  30. 30.

    Khan, W.A.; Farooq, S.; Kadry, S.; Hanif, M.; Iftikhar, F.J.; Abbas, S.Z.: Variable characteristics of viscosity and thermal conductivity in peristalsis of magneto-Carreau nanoliquid with heat transfer irreversibilities. Comput. Methods Prog. Biomed. 190, 105355 (2020)

    Article  Google Scholar 

  31. 31.

    Abbas, S.Z.; Khan, W.A.; Sun, H.; Ali, M.; Waqas, M.; Irfan, M.; Ahmad, S.: Modeling and analysis of von Kármán swirling flow for Oldroyd-B nanofluid featuring chemical processes. J. Braz. Soc. Mech. Sci. Eng. 41(12), 556 (2019)

    Article  Google Scholar 

  32. 32.

    Abbas, S.Z.; Shah, H.H.; Sun, H.; Rahaman, F.; Ahmed, F.: Gravitational collapse of dust fluid and dark energy in the presence of curvature: black hole formation. Mod. Phys. Lett. A 34(29), 1950240 (2019)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Hayat, T.; Khan, W.A.; Abbas, S.Z.; Nadeem, S.; Ahmad, S.: Impact of induced magnetic field on second-grade nanofluid flow past a convectively heated stretching sheet. Appl. Nanosci. 10, 3001–3009 (2020). https://doi.org/10.1007/s13204-019-01215-x

    Article  Google Scholar 

  34. 34.

    Abbas, S.Z.; Khan, W.A.; Sun, H.; Irfan, M.; Khan, M.I.; Waqas, M.: Von Kármán swirling analysis for modeling Oldroyd-B nanofluid considering cubic autocatalysis. Phys. Scr. 95(1), 015206 (2019)

    Article  Google Scholar 

  35. 35.

    Abbas, S.Z.; Khan, W.A.; Sun, H.; Ali, M.; Irfan, M.; Shahzed, M.; Sultan, F.: Mathematical modeling and analysis of Cross nanofluid flow subjected to entropy generation. Appl. Nanosci. 10(8), 3149–3160 (2020)

    Article  Google Scholar 

  36. 36.

    Ali, W.; Mahmood, S.; Chammam, W.; Ul-Haq, W.; Khan, W.A.; Abbas, S.Z.: Mathematical modeling and chemical conduct considering non-Newtonian nanofluid by utilizing heat flux features. Soft Comput., 1–11 (2020)

  37. 37.

    Santra, B.; Dandapat, B.S.; Andersson, H.I.: Axisymmetric stagnation-point flow over a lubricated surface. Acta Mech. 194, 1–10 (2007)

    Article  Google Scholar 

  38. 38.

    Sajid, M.; Mahmood, K.; Abbas, Z.: Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface. Chin. Phys. Lett. 29, 024702 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485). The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IFP-2020-10).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Y. M. Chu or W. Chammam.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbas, S.Z., Farooq, S., Chu, Y.M. et al. Numerical Study of Nanofluid Transport Subjected to the Collective Approach of Generalized Slip Condition and Radiative Phenomenon. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-020-05297-6

Download citation

Keywords

  • Radiative heat flux
  • Chemical reaction
  • Thermophoresis and Brownian motions
  • Generalized slip constraints
  • BVP4C