Experimental Investigations of the Turbulent Boundary Layer for Biomimetic Surface with Spine-Covered Protrusion Inspired by Pufferfish Skin


Pufferfish skin is known for its spine-covered surface, which differs significantly from that of common fish species. Recent research has shown that such rough surfaces may have potential applicability in saving energy. In order to verify the drag reduction effects of pufferfish skin, a flat sample and six samples featuring biomimetic spine-covered protrusions (BSCPs) with combinations of three different protrusion heights (0.2, 0.4, and 0.8 mm) and two array patterns (average and staggered) were manufactured. Force measurements and particle image velocimetry (PIV) were introduced with a free-stream velocity of 0.65 ms−1. Drag results suggested that the staggered surface with the shortest BSCPs achieved the best performance, exhibiting the maximum drag reduction of 5.9% compared to the flat sample. Lower Reynolds shear stress and turbulence intensity were achieved over the staggered array according to the PIV results. Less retrograde vortex structures existed inside a viscous buffer sublayer over the BSCPs sample, about 20 ~ 30% in quantity lower than flat one; these prominently influenced the drag reduction effect, as determined by a combination of the \( \upomega \)-criterion and Q-criterion. Furthermore, the coherent structure appeared orderly over the staggered array in the streamwise direction. As a result, the BSCPs height and array pattern are considered influential factors that remain to be optimized in the future for drag reduction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Kornilov, V.I.; Boiko, A.V.: Advances and challenges in periodic forcing of the turbulent boundary layer on a body of revolution. Prog. Aerosp. Sci. 98, 57–73 (2018). https://doi.org/10.1016/j.paerosci.2018.03.005

    Article  Google Scholar 

  2. 2.

    Walsh, M.J.; Lindemann, A.M.: Optimization and application of riblets for turbulent drag reduction. In: 22nd Aerospace Sciences Meeting. pp. 1–10. American Institute of Aeronautics and Astronautics, Reston, Virigina (1984)

  3. 3.

    Afroz, F.; Lang, A.; Habegger, M.L.; Motta, P.; Hueter, R.: Experimental study of laminar and turbulent boundary layer separation control of shark skin. Bioinsp. Biomimet. 12, 016009 (2017). https://doi.org/10.1088/1748-3190/12/1/016009

    Article  Google Scholar 

  4. 4.

    Bixler, G.D.; Bhushan, B.: Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Adv. Funct. Mater. 23, 4507–4528 (2013). https://doi.org/10.1002/adfm.201203683

    Article  Google Scholar 

  5. 5.

    Bechert, D.W.; Bruse, M.; Hage, W.; Van Der Hoeven, J.G.T.; Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997). https://doi.org/10.1017/S0022112096004673

    Article  Google Scholar 

  6. 6.

    Alfonsi, G.: Passive techniques for control of turbulence in wall-bounded flows. J. Flow Vis. Image Process. 15, 217–234 (2008). https://doi.org/10.1615/JFlowVisImageProc.v15.i3.30

    Article  Google Scholar 

  7. 7.

    Stenzel, V.; Wilke, Y.; Hage, W.: Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Prog. Org. Coat. 70, 224–229 (2011). https://doi.org/10.1016/j.porgcoat.2010.09.026

    Article  Google Scholar 

  8. 8.

    Sirovich, L.; Karlsson, S.: Turbulent drag reduction by passive mechanisms. Nature 388, 753–755 (1997). https://doi.org/10.1038/41966

    Article  Google Scholar 

  9. 9.

    Vadlamani, N.R.; Tucker, P.G.; Durbin, P.: Distributed roughness effects on transitional and turbulent boundary layers. Flow Turbul. Combust. 100, 627–649 (2018). https://doi.org/10.1007/s10494-017-9864-4

    Article  Google Scholar 

  10. 10.

    Cao, S.; Tamura, T.: Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill. J. Wind Eng. Ind. Aerodyn. 94, 1–19 (2006). https://doi.org/10.1016/j.jweia.2005.10.001

    Article  Google Scholar 

  11. 11.

    Sagong, W.; Kim, C.; Choi, S.; Jeon, W.; Choi, H.: Does the sailfish skin reduce the skin friction like the shark skin? Phys. Fluids 20, 101510 (2008). https://doi.org/10.1063/1.3005861

    Article  MATH  Google Scholar 

  12. 12.

    Webb, P.W.; Keyes, R.S.: Swimming kinematics of sharks. Fish. Bull. 80, 803–812 (1982)

    Google Scholar 

  13. 13.

    Noren, S.R.; Biedenbach, G.; Edwards, E.F.: Ontogeny of swim performance and mechanics in bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 209, 4724–4731 (2006). https://doi.org/10.1242/jeb.02566

    Article  Google Scholar 

  14. 14.

    Xiong, F.; Wang, C.; Liu, D.; Kou, F.: Comparative study of swimming capability of typical fish from songhua river basin. J. China Gorges Univ. Nat. Sci. 36, 14–18 (2014). https://doi.org/10.13393/j.cnki.issn.1672-948X.2014.04.004

    Article  Google Scholar 

  15. 15.

    Duan, X.; Xiong, Y.; Luo, H.: Critical swimming speed comparison of four species of fish at two acclimation temperature. Chin. J. Zool. 50, 529–536 (2015). https://doi.org/10.13859/j.cjz.201504004

    Article  Google Scholar 

  16. 16.

    Freadman, B.Y.M.A.: Swimming energetics of striped bass (Morone Saxatilis) and bluefish (Pomatomus Saltatrix): hydrodynamic correlates of locomotion and gill ventilation. J. Exp. Biol. 90, 253–265 (1979)

    Google Scholar 

  17. 17.

    Yanase, K.; Saarenrinne, P.: Unsteady turbulent boundary layers in swimming rainbow trout. J. Exp. Biol. 218, 1373–1385 (2015). https://doi.org/10.1242/jeb.108043

    Article  Google Scholar 

  18. 18.

    Wardle, C.S.; Videler, J.J.; Arimoto, T.; Franco, J.M.; He, P.: The muscle twitch and the maximum swimming speed of giant bluefin tuna. Thunnus thynnus L. J. Fish Biol. 35, 129–137 (1989). https://doi.org/10.1111/j.1095-8649.1989.tb03399.x

    Article  Google Scholar 

  19. 19.

    Li, L.; Li, G.; Li, R.; Xiao, Q.; Liu, H.: Multi-fin kinematics and hydrodynamics in pufferfish steady swimming. Ocean Eng. 158, 111–122 (2018). https://doi.org/10.1016/j.oceaneng.2018.03.080

    Article  Google Scholar 

  20. 20.

    Blake, R.W.; Chan, K.H.S.: Biomechanics of swimming in the pufferfish Diodon holocanthus: propulsive momentum enhancement is an adaptation for thrust production in an undulatory median and paired-fin swimmer. J. Fish Biol. 79, 1774–1794 (2011). https://doi.org/10.1111/j.1095-8649.2011.03115.x

    Article  Google Scholar 

  21. 21.

    Plaut, I.; Chen, T.: How small puffers (Teleostei: tetraodontidae) swim. Ichthyol. Res. 50, 149–153 (2003). https://doi.org/10.1007/s10228-002-0153-3

    Article  Google Scholar 

  22. 22.

    Zhou, H.; Shen, D.; Tian, G.; Cui, J.; Jia, C.: Biomechanical characteristics of puffer skin for flexible surface drag reduction. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2019.1655612

    Article  Google Scholar 

  23. 23.

    Byeon, M.S.; Park, J.Y.; Yoon, S.W.; Kang, H.W.: Structure and development of spines over the skin surface of the river puffer Takifugu obscurus (Tetraodontidae, Teleostei) during larval growth. J. Appl. Ichthyol. 27, 67–72 (2011). https://doi.org/10.1111/j.1439-0426.2010.01606.x

    Article  Google Scholar 

  24. 24.

    Christensen, K.T.: The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp. Fluids 36, 484–497 (2004). https://doi.org/10.1007/s00348-003-0754-2

    Article  Google Scholar 

  25. 25.

    Kähler, C.J.; Scharnowski, S.; Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52, 1641–1656 (2012). https://doi.org/10.1007/s00348-012-1307-3

    Article  Google Scholar 

  26. 26.

    Clauser, F.H.: Turbulent boundary layers in adverse pressure gradients. AIAA J. 22, 22–28 (1984). https://doi.org/10.2514/3.8334

    Article  Google Scholar 

  27. 27.

    Choi, H.; Moin, P.; Kim, J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503 (1993). https://doi.org/10.1017/S0022112093002575

    Article  MATH  Google Scholar 

  28. 28.

    Nugroho, B.; Hutchins, N.; Monty, J.P.: Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Int. J. Heat Fluid Flow 41, 90–102 (2013). https://doi.org/10.1016/j.ijheatfluidflow.2013.04.003

    Article  Google Scholar 

  29. 29.

    Hunt, J.C.R.; Wray, A.A.; Moin, P.: Eddies, stream, and convergence zones in turbulence. Center for Turbulence Research Proceedings of the Summer Program 1988, 193–208 (1988)

    Google Scholar 

  30. 30.

    Wang, J.; Pan, C.; Zhang, Q.; Li, T.: Modulating the near-wall velocity fields in wall-bounded turbulence via discrete surface roughness. AIAA J. 56, 2642–2652 (2018). https://doi.org/10.2514/1.J056886

    Article  Google Scholar 

  31. 31.

    Adrian, R.J.: Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301 (2007). https://doi.org/10.1063/1.2717527

    Article  MATH  Google Scholar 

  32. 32.

    Jiménez, J.: Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1 (2018). https://doi.org/10.1017/jfm.2018.144

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Zheng, Y.; Dong, L.; Rinoshika, A.: Multi-scale wake structures around the dune. Exp. Therm. Fluid Sci. 104, 209–220 (2019). https://doi.org/10.1016/j.expthermflusci.2019.02.021

    Article  Google Scholar 

  34. 34.

    Yuan, J.; Piomelli, U.: Numerical simulations of sink-flow boundary layers over rough surfaces. Phys. Fluids (2014). https://doi.org/10.1063/1.4862672

    Article  Google Scholar 

  35. 35.

    Marusic, I.: On the role of large-scale structures in wall turbulence. Phys. Fluids 13, 735–743 (2001). https://doi.org/10.1063/1.1343480

    Article  MATH  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (No. 52005227) and the Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University (No. KF20200007).

Author information



Corresponding author

Correspondence to Guizhong Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zhu, Y., Tian, G. et al. Experimental Investigations of the Turbulent Boundary Layer for Biomimetic Surface with Spine-Covered Protrusion Inspired by Pufferfish Skin. Arab J Sci Eng 46, 2865–2875 (2021). https://doi.org/10.1007/s13369-020-05235-6

Download citation


  • Pufferfish
  • Turbulent boundary layer
  • Biomimetic drag reduction
  • Spine-covered protrusion
  • PIV