Impacts of the Variable Properties of a Porous Medium on the Entropy Analysis Within Odd-Shaped Enclosures Filled by Hybrid Nanofluids

Abstract

The entropy generation from convective hybrid nanofluid flow within the odd-shaped geometries using the finite element method is examined is examined. The flow domain is filled by variable porosity and permeability porous media. Also, the thermal conductivity is assumed to be heterogeneous, and the Brinkman extended non-Darcy model is applied to simulate the porous medium. The geometry is considered partially/fully filled by the porous medium and four cases are assumed, namely, only the horizontal channel is a porous (case 1), only the vertical channel is a porous (case 2), the entire domain is a porous (case 3) and the entire domain is a non-porous (case 4). Different designs of the odd-geometry are taken into account based on the aspect ratio. The characteristic-based split (CBS) based on semi-implicit (SI) scheme is used to treat the governing equations. Simulations are carried out for various values of the maximum Darcy parameter \({\text{Da}}_{\hbox{max} }\), alumina-copper volume fraction \(\phi_{Al} , \phi_{Cu}\) and different conditions of the porous domain. It is noted that the case of the heterogeneous thermal conductivity maximizes the irreversibility from heat transfer and total entropy generation. Also, a weakness in values of the average Bejan number is obtained as the Rayleigh number is grown, regardless the porous conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Ahmed, S.E.: FEM-CBS algorithm for convective transport of nanofluids in inclined enclosures filled with anisotropic non-Darcy porous media using LTNEM. Int. J. Numer. Meth. Heat Fluid Flow (2020). https://doi.org/10.1108/HFF-01-2020-0042

    Article  Google Scholar 

  2. 2.

    Rashed, Z.Z.; Ahmed, Sameh E.; Raizah, Z.A.S.: Thermal dispersion and buongiorno’s nanofluid model effects on natural convection in an inclined rectangular enclosure partially filled with heat generating porous medium. J. Porous Media 23(4), 341–361 (2020)

    Article  Google Scholar 

  3. 3.

    Ahmed, S. E.: Non-Darcian natural convection of a nanofluid due to triangular fins within trapezoidal enclosures partially filled with a thermal non-equilibrium porous layer. J. Thermal Anal. Calorim. (2020)

  4. 4.

    Ahmed, S.E.; Mahdy, A.: Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media. Appl. Math. Mech. 37, 471–484 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Raizah, Z.A.S.; Aly, A.M.; Ahmed, S.E.: Natural convection flow of a power-law non-Newtonian nanofluid in inclined open shallow cavities filled with porous media. Int. J. Mech. Sci. 140, 376–393 (2018)

    Article  Google Scholar 

  6. 6.

    Ahmed, S.E.; Aly, A.M.: Mixed convection in a nanofluid-filled sloshing porous cavity including inner heated rose. J. Thermal Anal. Calorim. (2020)

  7. 7.

    Al-Weheibi, S.M.; Rahman, M.M.; Saghir, M.Z.: Impacts of variable porosity and variable permeability on the thermal augmentation of Cu–H2O nanofluid-drenched porous trapezoidal enclosure considering thermal nonequilibrium model. Arabian J. Sci. Eng. 45(2), 1237–1251 (2020)

    Article  Google Scholar 

  8. 8.

    Abelman, S.; Parsa, A.B.; Sayehvand, H.-O.: Nanofluid flow and heat transfer in a Brinkman porous channel with variable porosity. Quaestiones Mathe. 41(4), 449–467 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Saif, R.S.; Muhammad, T.; Sadia, H.: Significance of inclined magnetic field in Darcy-Forchheimer flow with variable porosity and thermal conductivity. Phys. A 551, 124067 (2020)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Nithiarasu, P.; Seetharamu, K.N.; Sundararajan, T.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40(16), 3955–3967 (1997)

    Article  Google Scholar 

  11. 11.

    S.M.M. El-Kabeir, M.A. El-Hakiem, A.M. Rashad, Natural convection from a permeable sphere embedded in a variable porosity porous medium due to thermal dispersion. Nonlinear Anal. Model. Control, vol 12, no 3, (2007).

  12. 12.

    Amiri, A.; Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37(6), 939–954 (1994)

    Article  Google Scholar 

  13. 13.

    Raizah, Z.: Mixed convection in a lid-driven cavity filled by a nanofluid with an inside circular cylinder. J. Nanofluids 6, 927–939 (2017)

    Article  Google Scholar 

  14. 14.

    Ahmed, S.E.: Natural convection of dusty hybrid nanofluids in diverging-converging cavities including volumetric heat sources. J. Therm. Sci. Eng. Appl. pp. 1–17, (2020)

  15. 15.

    Ahmed, S.E.: Modeling natural convection boundary layer flow of micropolar nanofluid over vertical permeable cone with variable wall temperature. Appl. Math. Mech. 38(8), 1171–1180 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Alqarni, M.; Tabassum, R.; Malik, M.; Mehmood, R.: Shape effects of molybdenum disulfide (nm) micro-rotating particles in crosswise transport of hydrogen oxide:(mos2–h2o) nano polymer gel. Phys. Scr. 95(3), 035002 (2020)

    Article  Google Scholar 

  17. 17.

    Sundar, L.S.; Singh, M.K.; Sousa, A.C.M.: Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 52, 73–83 (2014)

    Article  Google Scholar 

  18. 18.

    Sarkar, J.; Ghosh, P.; Adil, A.: A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)

    Article  Google Scholar 

  19. 19.

    Kalidasan, K.; RajeshKanna, P.: Natural convection on an open square cavity containing diagonally placed heaters and adiabatic square block and filled with hybrid nanofluid of nanodiamond—cobalt oxide/water. Int. Commun. Heat Mass Transf. 81, 64–71 (2017)

    Article  Google Scholar 

  20. 20.

    Ashorynejad, H.R.; Shahriari, A.: MHD natural convection of hybrid nanofluid in an open wavy cavity. Results Phys. 9, 440–455 (2018)

    Article  Google Scholar 

  21. 21.

    Mansour, M.; Siddiqa, S.; Gorla, R.S.R.; Rashad, A.: Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3-Cu/water hybrid nanofluid filled with square porous cavity. Thermal Sci. Eng. Progress 6, 57–71 (2018)

    Article  Google Scholar 

  22. 22.

    Raizah, Z.A.: Natural convection of dusty hybrid nanofluids in an enclosure including two oriented heated fins. Appl. Sci. 9, 2673 (2019)

    Article  Google Scholar 

  23. 23.

    Kadhim, H.T.; Jabbar, F.A.; Rona, A.: Cu-Al2O3 hybrid nanofluid natural convection in an inclined enclosure with wavy walls partially layered by porous medium. Int. J. Mech. Sci. 186, 105889 (2020)

    Article  Google Scholar 

  24. 24.

    Wang, B.; Shih, T.-M.; Huang, J.: Enhancing and attenuating heat transfer characteristics for circulating flows of nanofluids within rectangular enclosures. Int. Commun. Heat Mass Transfer 117, 104800 (2020)

    Article  Google Scholar 

  25. 25.

    Saha, S.K.: Magnetohydrodynamic buoyancy driven al2o3-water nanofluid flow in a differentially heated trapezoidal enclosure with a cylindrical barrier. Int. Commun. Heat Mass Transf. 114, 104593 (2020)

    Article  Google Scholar 

  26. 26.

    Keramat, F.; Dehghan, P.; Mofarahi, M.; Lee, C.-H.: Numerical analysis of natural convection of alumina–water nanofluid in h-shaped enclosure with a v-shaped baffle. J. Taiwan Institute Chem. Eng. 111, 63–72 (2020)

    Article  Google Scholar 

  27. 27.

    Yan, S.-R.; Hajatzadeh Pordanjani, A.; Aghakhani, S.; Shahsavar Goldanlou, A.; Afrand, M.: Managment of natural convection of nanofluids inside a square enclosure by different nano powder shapes in presence of fins with different shapes and magnetic field effect. Adv. Powder Technol. 31(7), 2759–2777 (2020)

    Article  Google Scholar 

  28. 28.

    Kefayati, G.: Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Technol. 299, 127–149 (2016)

    Article  Google Scholar 

  29. 29.

    Kefayati, G.: Simulation of natural convection and entropy generation of non-Newtonian nanofluid in a porous cavity using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 112, 709–744 (2017)

    Article  Google Scholar 

  30. 30.

    Siavashi, M.; Yousofvand, R.; Rezanejad, S.: Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv. Powder Technol. 29, 142–156 (2018)

    Article  Google Scholar 

  31. 31.

    Goqo, S.P.; Mondal, H.; Sibanda, P.; Motsa, S.S.: A multivariate spectral quasilinearisation method for entropy generation in a square cavity filled with porous medium saturated by nanofluid. Case Stud. Thermal Eng. 14, 100415 (2019)

    Article  Google Scholar 

  32. 32.

    Rahimi, A.; Kasaeipoor, A.; Malekshah, E.H.; Amiri, A.: Natural convection analysis employing entropy generation and heatline visualization in a hollow L-shaped cavity filled with nanofluid using lattice Boltzmann method- experimental thermo-physical properties. Phys. E 97, 82–97 (2018)

    Article  Google Scholar 

  33. 33.

    Wang, S.; Nan, C.; Qiao, J.; Huang, D.; Nabipour, N.; Ross, D.: Free convection and entropy generation in a nanofluid-filled star-ellipse annulus using lattice Boltzmann method supported by immersed boundary method. Int. J. Mech. Sci. 176, 105526 (2020)

    Article  Google Scholar 

  34. 34.

    Parvin, S.; Chamkha, A.J.: An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int. Commun. Heat Mass Transf. 54, 8–17 (2014)

    Article  Google Scholar 

  35. 35.

    Amiri, A.; Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37, 939–954 (1994)

    Article  Google Scholar 

  36. 36.

    Al-Weheibi, S.M.; Rahman, M.M.; Saghir, M.Z.: Impacts of variable porosity and variable permeability on the thermal augmentation of Cu–H2O nanofluid-drenched porous trapezoidal enclosure considering thermal nonequilibrium model. Arab. J. Sci. Eng. 45, 1237–1251 (2020)

    Article  Google Scholar 

  37. 37.

    Ergun, S.: Fluid flow through packed columns. Chem. Eng. Progress 48(2), 89–94 (1952)

    Google Scholar 

  38. 38.

    Cheng, P.; Hsu, C.T.: Fully developed, forced convective flow through an annular packed-sphere bed with wall effects. Int. J. Heat Mass Transfer 29, 1843–1853 (1986)

    Article  Google Scholar 

  39. 39.

    Ahmed, S.E.: Caputo fractional convective flow in an inclined wavy vented cavity filled with a porous medium using Al2O3-Cu hybrid nanofluids. Int. Commun. Heat Mass Transfer 116, 104690 (2020)

    Article  Google Scholar 

  40. 40.

    Lewis, R.W.; Nithiarasu, P.; Seetharamu, K.N.: Fundamentals of the Finite Element Method for Heat and Fluid Flow, 1st edn. Wiley, Hoboken (2004)

    Google Scholar 

  41. 41.

    Ilis, G.G.; Mobedi, M.; Sunden, B.: Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int. Commun. Heat Mass Transf. 35, 696–703 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (G.R.P/4/42).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sameh E. Ahmed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.E., Raizah, Z.A.S. & Aly, A.M. Impacts of the Variable Properties of a Porous Medium on the Entropy Analysis Within Odd-Shaped Enclosures Filled by Hybrid Nanofluids. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-020-05218-7

Download citation

Keywords

  • Variable porosity
  • Entropy generation
  • Odd-shaped enclosures
  • Hybrid nanofluids
  • Finite element method (FEM)
  • CBS-scheme