Nanostructured Palladacycle and its Decorated Ag-NP Composite: Synthesis, Morphological Aspects, Characterization, Quantum Chemical Calculation and Antimicrobial Activity

Abstract

We herein report the synthesis of nanostructured cyclopalladated complex and its nanosilver composite for the first time. The reaction between Schiff base ligand 4-methyl-N-(3,4-dimethoxybenzylidene)] benzenamine (L) and palladium acetate gave the cyclopalladted complex (Pd1) in nanoscale. Thermal treatment of silver oxalate with Pd1 resulted in the formation of novel nanostructured composite, silver nanoparticle-decorated palladacycle (Pd2). The synthesized compounds were characterized using spectroscopic analysis (FT-IR and 1H NMR), thermal analysis (TGA), XRD and morphological analysis (SEM and TEM). The spectral analysis revealed that complex Pd1 has dimeric structure bridged with acetate ligands between two monomers. SEM images exhibited that Ag-NPs loaded on complex surface in decorated form. TEM photographs showed the particle sizes of composite ≈ 29 nm. Quantum chemical analysis of ligand and complex Pd1 has been carried out by DFT/B3LYP method. There are two suggested isomers for cyclopalladated complex named Pd1 and Pd1* which are theoretically studied and correlated with practical results. HOMO, LUMO energy values, chemical hardness–softness, electronegativity and electrophilic index were calculated. The theoretical data obtained have been confirmed that the Pd1 isomer is more stable than Pd1* isomer which correlated well with practical results. The ligand and complexes screened for antimicrobial activity against five medically important microorganisms, namely Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. The results showed that complex Pd2 displayed the highest activity against the tested microorganisms.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Tsuji, J.A.: Palladium reagents and catalysts: new perspectives for the 21st century. Wiley, New York (2004)

    Google Scholar 

  2. 2.

    Phan, T.T.V.; Hoang, G.; Nguyen, T.P.; Kim, H.H.; Mondal, S.; Manivasagan, P.; Moorthy, M.; Kang, L.; Junghwan, O.: Chitosan as a stabilizer and size-control agent for synthesis of porous flower-shaped palladium nanoparticles and their applications on photo-based therapies. Carbohyd. Polym. 205, 340–352 (2019)

    Article  Google Scholar 

  3. 3.

    Clavadetscher, J.; Indrigo, E.; Chankeshwara, S.V.; Lilienkampf, A.; Bradley, M.: In-cell dual drug synthesis by cancer-targeting palladium catalysts. Angew. Chem. 129(24), 6968–6972 (2017)

    Article  Google Scholar 

  4. 4.

    Nassar, A.M.: Bioactive palladium azomethine chelates, a review of recent research. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46(9), 1349–1366 (2016)

    Article  Google Scholar 

  5. 5.

    Prasad, K.S.; Kumar, L.S.; Chandan, S.; Kumar, R.N.; Revanasiddappa, H.D.: Palladium (II) complexes as biologically potent metallo-drugs: synthesis, spectral characterization, DNA interaction studies and antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 107, 108–116 (2013)

    Article  Google Scholar 

  6. 6.

    Abdel-Rahman, L.H.; Adam, M.S.S.; Abu-Dief, A.M.; Moustafa, H.; Basha, M.T.; Aboraia, A.S.; Al-Farhan, B.; Ahmed, H.E.S.: Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: promising antibiotic and anticancer agents. Appl. Organomet. Chem. 32(12), e4527 (2018)

    Article  Google Scholar 

  7. 7.

    Abdel-Rahman, L.H.; Abu-Dief, A.M.; Shehata, M.R.; Atlam, F.M.; Abdel-Mawgoud, A.A.H.: Some new Ag (I), VO (II) and Pd (II) chelates incorporating tridentate imine ligand: design, synthesis, structure elucidation, density functional theory calculations for DNA interaction, antimicrobial and anticancer activities and molecular docking studies. Appl. Organomet. Chem. 33(4), e4699 (2019)

    Article  Google Scholar 

  8. 8.

    Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdel-Mawgoud, A.A.H.: A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal-azomethine chelates incorporating Ag (I), Pd (II) and VO (II) cations: probing the aspects of DNA interaction. Appl. Organomet. Chem. 34(2), e5373 (2020)

    Article  Google Scholar 

  9. 9.

    Zhou, X.Q.; Busemann, A.; Meijer, M.S.; Siegler, M.A.; Bonnet, S.: The two isomers of a cyclometallated palladium sensitizer show different photodynamic properties in cancer cells. Chem. Commun. 55(32), 4695–4698 (2019)

    Article  Google Scholar 

  10. 10.

    Elsegood, M.R.; Han, J.; Smith, M.B.; Wu, S.: Synthesis and characterization of a cyclometallated palladium (II) complex with (2-diphenylphosphino) ethylamine. Phosphorus Sulfur Silicon Relat. Eleme. 194(4–6), 440–441 (2019)

    Article  Google Scholar 

  11. 11.

    Dickmu, G.C.; Smoliakova, I.P.: Cyclopalladated complexes containing an (sp3) C-Pd bond. Coord. Chem. Rev. 409, 213203 (2020)

    Article  Google Scholar 

  12. 12.

    Gao, X.; Gong, G.; Zhang, Z.; Du, G.; Cao, Y.; Zhao, G.: A novel cyclopalladated ferrocene derivative: synthesis, single crystal structure and evaluation of in vitro antitumor activity. J. Mol. Struct. 1200, 127077 (2020)

    Article  Google Scholar 

  13. 13.

    Gorunova, O.N.; Grishin, Y.K.; Ilyin, M.M.; Kochetkov, K.A.; Churakov, A.V.; Kuz, L.G.; Dunina, V.V.: Enantioselective catalysis of Suzuki reaction with planar-chiral CN-palladacycles: competition of two catalytic cycles. Russ. Chem. Bull. 66(2), 282–292 (2017)

    Article  Google Scholar 

  14. 14.

    Alam, M.N.; Huq, F.: Comprehensive review on tumour active palladium compounds and structure–activity relationships. Coord. Chem. Rev. 316, 36–67 (2016)

    Article  Google Scholar 

  15. 15.

    Garoufis, A.; Hadjikakou, S.K.; Hadjiliadis, N.: Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord. Chem. Rev. 253(9–10), 1384–1397 (2009)

    Article  Google Scholar 

  16. 16.

    Nassar, A.M.; Hassan, A.M.; Alabd, S.S.: Antitumor and antimicrobial activities of novel palladacycles with abnormal aliphatic CH activation of Schiff Base 2-[(3-phenylallylidene) amino] phenol. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45(2), 256–270 (2015)

    Article  Google Scholar 

  17. 17.

    Han, X.; Li, H.M.; Xu, C.; Xiao, Z.Q.; Wang, Z.Q.; Fu, W.J.; Hao, X.; Song, M.P.: Water-soluble palladacycles containing hydroxymethyl groups: synthesis, crystal structures and use as catalysts for amination and Suzuki coupling of reactions. Transit Met Chem 41(4), 403–411 (2016)

    Article  Google Scholar 

  18. 18.

    Balam-Villarreal, J.A.; Sandoval-Chávez, C.I.; Ortega-Jiménez, F.; Toscano, R.A.; Carreón-Castro, M.P.; López-Cortés, J.G.; Ortega-Alfaro, M.C.: Infrared irradiation or microwave assisted cross-coupling reactions using sulfur-containing ferrocenyl-palladacycles. J. Organomet. Chem. 818, 7–14 (2016)

    Article  Google Scholar 

  19. 19.

    Li, S.; Zhou, Y.; Yu, C.; Chen, F.; Xu, J.: Switching the ligand-exchange reactivities of chloro-bridged cyclopalladated azobenzenes for the colorimetric sensing of thiocyanate. New J. Chem. 33(7), 1462–1465 (2009)

    Article  Google Scholar 

  20. 20.

    Monas, A.; Užarević, K.; Halasz, I.; Kulcsár, M.J.; Ćurić, M.: Vapour-induced solid-state C–H bond activation for the clean synthesis of an organopalladium biothiol sensor. Chem. Commun. 52(88), 12960–12963 (2016)

    Article  Google Scholar 

  21. 21.

    Nassar, A.M.; Hassan, A.M.; Ibraheem, N.M.; Hekal, B.H.: Synthesis and comparative studies of cyclopalladated complexes with ortho C–H activation of aromatic rings bearing electron donating and electron withdrawing groups. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45(6), 813–820 (2015)

    Article  Google Scholar 

  22. 22.

    Ryabov, A.D.: Thermodynamics, kinetics, and mechanism of exchange of cyclopalladated ligands. Inorg. Chem. 26(8), 1252–1260 (1987)

    Article  Google Scholar 

  23. 23.

    Nassar, A.M.; Elseman, A.M.; Alsohaimi, I.H.; Alotaibi, N.F.; Khan, A.: Diaqua oxalato strontium (II) complex as a precursor for facile fabrication of Ag-NPs@ SrCO3, characterization, optical properties, morphological studies and adsorption efficiency. J. Coord. Chem. 72(5–7), 771–785 (2019)

    Article  Google Scholar 

  24. 24.

    Reddy, K.R.; Lee, K.P.; Lee, Y.; Gopalan, A.I.: Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater. Lett. 62(12–13), 1815–1818 (2008)

    Article  Google Scholar 

  25. 25.

    Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M.: Electrochemical behavior of flufenamic acid at amberlite XAD-4 resin and silver-doped titanium dioxide/amberlite XAD-4 resin modified carbon electrodes. Colloids Surf. B 177, 407–415 (2019)

    Article  Google Scholar 

  26. 26.

    Reddy, K.R.; Sin, B.C.; Ryu, K.S.; Kim, J.C.; Chung, H.; Lee, Y.: Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth. Met. 159(7–8), 595–603 (2009)

    Article  Google Scholar 

  27. 27.

    Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Aminabhavi, T.M.; Reddy, K.R.: Nanostructured silver doped TiO2/CNTs hybrid as an efficient electrochemical sensor for detection of anti-inflammatory drug, cetirizine. Microchem. J. 150, 104124 (2019)

    Article  Google Scholar 

  28. 28.

    Reddy, K.R.; Nakata, K.; Ochiai, T.; Murakami, T.; Tryk, D.A.; Fujishima, A.: Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J. Nanosci. Nanotechnol. 11(4), 3692–3695 (2011)

    Article  Google Scholar 

  29. 29.

    Reddy, C.V.; Reddy, K.R.; Shetti, N.P.; Shim, J.; Aminabhavi, T.M.; Dionysiou, D.D.: Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—a review. Int. J. Hydrog. Energy 45(36), 18331–18347 (2020)

    Article  Google Scholar 

  30. 30.

    Nassar, A.M.; Zeid, E.A.; Elseman, A.M.; Alotaibi, N.F.: A novel heterometallic compound for design and study of electrical properties of silver nanoparticles-decorated lead compounds. New J. Chem. 42(2), 1387–1395 (2018)

    Article  Google Scholar 

  31. 31.

    Bhandari, M.E.E.N.A.; Raj, S.E.E.M.A.: Practical approach to green chemistry. Int. J. Pharm. Pharm. Sci. 9, 10–26 (2017)

    Article  Google Scholar 

  32. 32.

    Navaladian, S.; Viswanathan, B.; Viswanath, R.P.; Varadarajan, T.K.: Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett. 2(1), 44–48 (2007)

    Article  Google Scholar 

  33. 33.

    Gaussian, J.: 09, revision A. 02; Gaussian. Inc.: Wallingford CT (2009).

  34. 34.

    Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.N.; Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  Google Scholar 

  35. 35.

    Kass, S.R.: Zwitterion−dianion complexes and anion−anion clusters with negative dissociation energies. J. Am. Chem. Soc. 127(38), 13098–13099 (2005)

    Article  Google Scholar 

  36. 36.

    Hassan, A.M.; Nassar, A.M.; Hussien, Y.Z.; Elkmash, A.N.: Synthesis, characterization and biological evaluation of Fe (III), Co (II), Ni (II), Cu (II), and Zn (II) complexes with tetradentate Schiff base ligand derived from protocatechualdehyde with 2-aminophenol. Appl. Biochem. Biotechnol. 167(3), 581–594 (2012)

    Article  Google Scholar 

  37. 37.

    Abdel-Rahman, L.H.; Abu-Dief, A.M.; Aboelez, M.O.; Abdel-Mawgoud, A.A.H.: DNA interaction, antimicrobial, anticancer activities and molecular docking study of some new VO (II), Cr (III), Mn (II) and Ni (II) mononuclear chelates encompassing quaridentate imine ligand. J. Photochem. Photobiol. B 170, 271–285 (2017)

    Article  Google Scholar 

  38. 38.

    Abu-Dief, A.M.; El-Sagher, H.M.; Shehata, M.R.: Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu (II), Pd (II), Zn (II) and Cr (III) complexes. Appl. Organomet. Chem. 33(8), e4943 (2019)

    Article  Google Scholar 

  39. 39.

    Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.; Nafady, A.: Synthesis and characterization of new Cr (III), Fe (III) and Cu (II) complexes incorporating multi-substituted aryl imidazole ligand: structural, DFT, DNA binding, and biological implications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 228, 117700 (2020)

    Article  Google Scholar 

  40. 40.

    Vinoth, B.; Manivasagaperumal, R.; Rajaravindran, M.: Phytochemical analysis and antibacterial activity of Azadirachta indica A. Juss. Int. J. Res. Plant Sci. 2(3), 50–55 (2012)

    Google Scholar 

  41. 41.

    Ahirwal, L.; Singh, S.; Mehta, A.; Rajoria, A.: Evaluation of antimicrobial potential of gymnema sylvestre leaves extracts. Int. J. Pharm. Sci. Rev. Res. 16(2), 43–46 (2012)

    Google Scholar 

  42. 42.

    Wayne, PA.: Clinical and Laboratory Standards Institute; CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; CLSI document M100-S24. (2014).

  43. 43.

    Singariya, P.; Kumar, P.; Mourya, K.K.: In-vitro bio-efficacy of stem extracts of ashwagandha against some pathogens. J. Curr. Pharm. Res. 8(1), 25–30 (2011)

    Google Scholar 

  44. 44.

    Dash, G.K.; Murthy, P.N.: Antimicrobial activity of few selected medicinal plants. Int. Res. J. Pharm. 2(1), 146–152 (2011)

    Google Scholar 

  45. 45.

    Nyquist, R.A.; Kagel, R.O.: Handbook of infrared and raman spectra of inorganic compounds and organic salts: infrared spectra of inorganic compounds, p. 4. Academic press, Cambridge (2012)

    Google Scholar 

  46. 46.

    Bellamy, L.J.F.C.: The infra-red spectra of complex molecules. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  47. 47.

    López, C.; Caubet, A.; Pérez, S.; Solans, X.; Font-Bardı́a, M.: Assembly of cyclopalladated units: synthesis, characterisation, X-ray crystal structure and study of the reactivity of the tetrametallic cyclopalladated complex [Pd {C6H4–CH=N–(C6H4–2–O)}]4·2CHCl3. J. Organomet. Chem. 681(1–2), 82–90 (2003)

    Article  Google Scholar 

  48. 48.

    Hiraki, K.; Fuchita, Y.; Nakaya, H.; Takakura, S.: Preparations and characterization of cyclopalladated complexes of 1-ethyl-2-phenylimidazole. Bull. Chem. Soc. Jpn. 52(9), 2531–2534 (1979)

    Article  Google Scholar 

  49. 49.

    Vila, J.M.; Gayoso, M.; Pereira, M.T.; López, M.; Alonso, G.; Fernández, J.J.: Cyclometallated complexes of PdII and MnI with N,N-terephthalylidenebis (cyclohexylamine). J. Organomet. Chem. 445(1–2), 287–294 (1993)

    Article  Google Scholar 

  50. 50.

    Ghosh, D.; Chen, S.: Palladium nanoparticles passivated by metal–carbon covalent linkages. J. Mater. Chem. 18(7), 755–762 (2008)

    Article  Google Scholar 

  51. 51.

    Vicente, J.; Abad, J.A.; Frankland, A.D.; de Arellano, M.C.R.: Synthesis and reactivity of 2-Aminophenylpalladium (II) complexes: insertion reactions of oxygen and carbon monoxide into carbon–palladium bonds—new examples of “transphobia.” Chem. A Eur. J. 5(10), 3066–3075 (1999)

    Article  Google Scholar 

  52. 52.

    Alexander, D.R.; Vladimir, A.P.; Anatoly, K.: Y, Some complexes of palladium(II) with C-phenylglycine and its derivatives cyclopalladation of N, N-dimethyl-C-phenylglycine ethyl ester. Inorg. Chimica Acta 91, 59–65 (1984)

    Article  Google Scholar 

  53. 53.

    Abbott, A.P.; Nandhra, S.; Postlethwaite, S.; Smith, E.L.; Ryder, K.S.: Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM and atomic force microscopy. Phys. Chem. Chem. Phys. 9(28), 3735–3743 (2007)

    Article  Google Scholar 

  54. 54.

    Abbott, A.P.; Griffith, J.; Nandhra, S.; O’Connor, C.; Postlethwaite, S.; Ryder, K.S.; Smith, E.L.: Sustained electroless deposition of metallic silver from a choline chloride-based ionic liquid. Surf. Coat. Technol. 202(10), 2033–2039 (2008)

    Article  Google Scholar 

  55. 55.

    Ma, P.C.; Tang, B.Z.; Kim, J.K.: Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46(11), 1497–1505 (2008)

    Article  Google Scholar 

  56. 56.

    Sangaonkar, G.M.; Pawar, K.D.: Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids Surf. B 164, 210–217 (2018)

    Article  Google Scholar 

  57. 57.

    Verleysen, E.; Van Doren, E.; Waegeneers, N.; De Temmerman, P.J.; Abi Daoud Francisco, M.; Mast, J.: TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J. Agric. Food Chem. 63(13), 3570–3578 (2015)

    Article  Google Scholar 

  58. 58.

    Guo, Y.; Li, J.; Shi, X.; Liu, Y.; Xie, K.; Liu, Y.; Xie, Y.; Liy, Y.; Jiang, Y.; Yang, B.; Yang, R.: Cyclodextrin-supported palladium complex: a highly active and recoverable catalyst for Suzuki–Miyaura cross-coupling reaction in aqueous medium. Appl. Organomet. Chem. 31(4), e3592 (2017)

    Article  Google Scholar 

  59. 59.

    Anigol, L.B.; Charantimath, J.S.; Gurubasavaraj, P.M.: Effect of concentration and ph on the size of silver nanoparticles synthesized by green chemistry. Org. Med. Chem. Int. J. 3, 1–5 (2017)

    Google Scholar 

  60. 60.

    Zeid, E.A.; Nassar, A.M.; Hussein, M.A.; Alam, M.M.; Asiri, A.M.; Hegazy, H.H.; Rahman, M.M.: Mixed oxides CuO–NiO fabricated for selective detection of 2-Aminophenol by electrochemical approach. J. Mater. Res.Technol. 9(2), 1457–1467 (2020)

    Article  Google Scholar 

  61. 61.

    Morgan, S.M.; Diab, M.A.; El-Sonbati, A.Z.: Synthesis, spectroscopic, thermal properties, Calf thymus DNA binding and quantum chemical studies of M (II) complexes. Appl. Organomet. Chem. 32(5), e4281 (2018)

    Article  Google Scholar 

  62. 62.

    Mahmoud, W.H.; Deghadi, R.G.; Mohamed, G.G.: Preparation, geometric structure, molecular docking thermal and spectroscopic characterization of novel Schiff base ligand and its metal chelates. J. Therm. Anal. Calorim. 127(3), 2149–2171 (2017)

    Article  Google Scholar 

  63. 63.

    Mahmoud, W.H.; Mahmoud, N.F.; Mohamed, G.G.: Synthesis, physicochemical characterization, geometric structure and molecular docking of new biologically active ferrocene based Schiff base ligand with transition metal ions. Appl. Organomet. Chem. 31(12), e3858 (2017)

    Article  Google Scholar 

  64. 64.

    Elseman, A.M.; Shalan, A.E.; Rashad, M.M.; Hassan, A.M.; Ibrahim, N.M.; Nassar, A.M.: Easily attainable new approach to mass yield ferrocenyl Schiff base and different metal complexes of ferrocenyl Schiff base through convenient ultrasonication-solvothermal method. J. Phys. Org. Chem. 30(6), e3639 (2017)

    Article  Google Scholar 

  65. 65.

    Pitchumani Violet Mary, C.; Shankar, R.; Vijayakumar, S.: Theoretical insights into the metal chelating and antimicrobial properties of the chalcone based Schiff bases. Mol. Simul. 45(8), 636–645 (2019)

    Article  Google Scholar 

  66. 66.

    Rahman, L.H.A.; Abu-Dief, A.M.; Hamdan, S.K.; Seleem, A.A.: Nano structure Iron (II) and Copper (II) Schiff base complexes of a NNO-tridentate ligand as new antibiotic agents: spectral, thermal behaviors and DNA binding ability. Int. J. Nano. Chem. 1(2), 65–77 (2015)

    Google Scholar 

  67. 67.

    Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M.: Some new nano-sized Fe (II), Cd (II) and Zn (II) Schiff base complexes as precursor for metal oxides: sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg. Chem. 69, 140–152 (2016)

    Article  Google Scholar 

  68. 68.

    Abdel-Rahman, L.H.; Abu-Dief, A.M.; Moustafa, H.; Hamdan, S.K.: Ni (II) and Cu (II) complexes with ONNO asymmetric tetradentate Schiff base ligand: synthesis, spectroscopic characterization, theoretical calculations, DNA interaction and antimicrobial studies. Appl. Organomet. Chem. 31(2), e3555 (2017)

    Article  Google Scholar 

  69. 69.

    Silva-Holguín, P.N.; Reyes-López, S.Y.: Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response 18(3), 1559325820951342 (2020)

    Article  Google Scholar 

  70. 70.

    Alsohaimi, I.H.; Nassar, A.M.; Elnasr, T.A.S.; Amar Cheba, B.: A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: a potent photocatalytic and antibacterial activities. J. Clean. Prod. 248, 119274 (2020)

    Article  Google Scholar 

  71. 71.

    Abd El Salam, H.M.; Nassar, H.N.; Khidr, A.S.A.; Zaki, T.: Antimicrobial activities of green synthesized Ag nanoparticles @ Ni-MOF nanosheets. J. Inorg. Organomet. Polym. Mater. 28(6), 2791–2798 (2018)

    Article  Google Scholar 

  72. 72.

    Firouzjaei, M.D.; Shamsabadi, A.A.; Aktij, S.A.; Seyedpour, S.F.; Sharifian, G.M.; Rahimpour, A.; Esfahani, M.R.; Ulbricht, M.; Soroush, M.: Exploiting synergetic effects of graphene oxide and a silver-based metal-organic framework to enhance antifouling and anti-biofouling properties of thin-film nanocomposite membranes. ACS Appl. Mater. Interfaces 10(49), 42967–42978 (2018)

    Article  Google Scholar 

  73. 73.

    Wang, Y.; Ding, X.; Chen, Y.; Guo, M.; Zhang, Y.; Guo, X.; Gu, H.: Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 101, 207–216 (2016)

    Article  Google Scholar 

  74. 74.

    Kishanji, M.; Mamatha, G.; Obi Reddy, K.; Rajulu, A.V.; Madhukar, K.: In situ generation of silver nanoparticles in cellulose matrix using Azadirachta indica leaf extract as a reducing agent. Int. J. Polym. Anal. Charact. 22(8), 734–40 (2017)

    Article  Google Scholar 

  75. 75.

    Abreu, A.S.; Oliveiraa, M.; de Sa, A.; Rodriguesb, R.M.; Cerqueirab, M.A.; Vicenteb, A.A.; Machado, A.V.: Antimicrobial nanostructured starch-based films for packaging. Carbohydr. Polym. 129, 127–34 (2015)

    Article  Google Scholar 

  76. 76.

    Fayaz, M.A.; Balaji, K.; Girilal, M.; Kalaichelvan, P.T.; Venkatesan, R.: Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agric. Food Chem. 57(14), 6246–6252 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for central laboratory, Jouf University for facilitating of samples analysis. Also, we would like to thank Prof. Ibrahim A. Taher (Microbiology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia) for the use of their facilities in antimicrobial experiments.

Funding

The authors are thankful for Jouf University for financial supporting this work Project Number (40/378).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. Nassar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, N.F., Alsohaimi, I.H., Hassan, A.M. et al. Nanostructured Palladacycle and its Decorated Ag-NP Composite: Synthesis, Morphological Aspects, Characterization, Quantum Chemical Calculation and Antimicrobial Activity. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-020-05214-x

Download citation

Keywords

  • Nanocomplex
  • Palladium
  • Schiff base
  • Ag-NPs
  • Antimicrobial activity