A Simplified Design Method for Lateral–Torsional Buckling of GFRP Pultruded I-Beams

Abstract

This paper provides a simplified design approach for estimating the lateral–torsional buckling (LTB) strength of the pultruded glass fiber-reinforced polymer (GFRP) composite I-beams. A detailed finite element (FE) model based on ABAQUS incorporating more realistic parameters for pultruded GFRP I-beam is developed and verified against the test results available in the relevant literature. After achieving a reliable FE model (through high degree of accuracy in the numerical validation), detailed parametric studies were undertaken by varying the section geometries as well as the span of pultruded I-beams. The selection of the sectional dimensions was based on the composite manuals available in the market, to ensure ease in the practical application of the outcomes of this study. In this analysis, simply supported beam with a uniform bending moment is considered. In accordance with the results of the FE parametric analysis, the accuracy of the theoretical LTB strengths predicted by the equations proposed for pultruded GFRP beams available in the literature is assessed. This comparison indicates that the existing method results in an over-conservative LTB strength estimates for pultruded GFRP I-beams, especially in the low and medium slenderness range. This is primarily due to a comparatively lesser impact of section imperfections on LTB resistance than high slenderness range. Therefore, to address this shortcoming, new simplified design formulations were proposed to have high accuracy of the LTB strength predictions for pultruded GFRP I-beams especially in the low and medium slenderness range. The proposed equations have been provided that might aid the structural engineers in economically designing the pultruded GFRP I-beams in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

L :

Beam length

B :

Flange width

H:

Section depth

T 2 :

Web thickness

T 1 :

Flange thickness

R :

Root radius

χ LT :

Reduction factor

\(\overline{\lambda}_{{\text{LT,0}}}\) :

Plateau length

\(\overline{\lambda }_{{{\text{LT}}}}\) :

Non-dimensional slenderness

\(\alpha_{{\text{LT}}}\) :

Imperfection factor

σ loc :

Local buckling stress

\(\gamma_{{\text{M1}}}\) :

Safety partial factor

\(W_{\text{x}}\) :

Section modulus about the major axis

M LT :

Lateral–torsional buckling moment

M cr :

Elastic critical lateral–torsional buckling moment

M crl :

Elastic critical local buckling moment

υ LT :

Lamina major Poisson’s ratio

M Ng :

LTB moment predicted according to Nguyen et al. curve

M Prop1.:

LTB moment predicted according to design option 1

M Prop2.:

LTB moment predicted according to design option 2

P cr, FEA :

Lateral–torsional buckling load

E L , E T , G LT :

Longitudinal, transverse and shear modulus of elasticity

References

  1. 1.

    Bank, L.C.: Composite for construction - structural design with FRP materials. John Wiley & Sons, New jersey (2006)

    Google Scholar 

  2. 2.

    Russo, S.; Ghadimi, B.; Lawania, K.; Rosano, M.: Residual strength testing in pultruded FRP material under a variety of temperature cycles and values. Compos. Struct. 133, 458–475 (2015)

    Article  Google Scholar 

  3. 3.

    ACI.: State of the art report on fibre reinforced plastic (FRP) reinforcement for concrete structures (440R-96). ACI Committee 440. American Concrete Institute. (1996)

  4. 4.

    ACI.: Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures (440.2R-02). ACI committee 440. American Concrete Institute, Farmington hills, Mich. (2002)

  5. 5.

    Mottram, J.T.: Lateral-torsional buckling of a pultruded I-beam. Compos. 23(2), 81–92 (1992)

    Article  Google Scholar 

  6. 6.

    Hodges, D.H.; Peters, D.A.: Lateral-torsional buckling of cantilevered elastically coupled composite strip and I-beams. Int. J. Sol. Struct. 38(9), 1585–1603 (2001)

    Article  Google Scholar 

  7. 7.

    Sapkas, A.; Kollar, L.P.: Lateral-torsional buckling of composite beams. Int. J. Sol. Struct. 39, 2939–2963 (2002)

    Article  Google Scholar 

  8. 8.

    Qiao, P.Z.; Zou, G.; Davalos, J.F.: Flexural-torsional buckling of fiber-reinforced plastic composite cantilever I-beams. Compos. Struct. 60(2), 205–217 (2003)

    Article  Google Scholar 

  9. 9.

    Shan, L.; Qiao, P.: Flexural-torsional buckling of fiber-reinforced plastic composite open channel beams. Compos. Struct. 68(2), 211–224 (2005)

    Article  Google Scholar 

  10. 10.

    Zureick, A.H.; Bennett, R.M.; Ellingwood, B.R.: Statistical characterization of FRP composite material properties for structural design. J. Struct. Eng. 132(8), 1320–1327 (2006)

    Article  Google Scholar 

  11. 11.

    Correia, J.R.; Branco, F.A.; Silva, N.M.F.; Camotim, D.; Silvestre, N.: First-order, buckling and post-buckling behaviour of GFRP pultruded beams. Part 1: Experimental study. Comput. Struct. 89(21–22), 2052–2064 (2011)

    Article  Google Scholar 

  12. 12.

    Silva, N.M.F.; Camotim, D.; Silvestre, N.; Correia, J.R.; Branco, F.A.: First-order, buckling and post-buckling behaviour of GFRP pultruded beams. Part 2: Numerical simulation. Comput. Struct. 89, 2065–2078 (2011)

    Article  Google Scholar 

  13. 13.

    Thumrongvut, J.; Seangatith, S.: Experimental study on lateral-torsional buckling of PFRP cantilevered channel beams. Procedia Engineering 14, 2438–2445 (2011)

    Article  Google Scholar 

  14. 14.

    Regel, F.; Hattum, F.W.V.; Dias, G.R.: A numerical and experimental study of the material properties determining the crushing behaviour of pultruded GFRP profiles under lateral compression. J. Compos. Mater. 47(4), 1749–1764 (2012)

    Google Scholar 

  15. 15.

    Nguyen, T.T.; Chan, T.M.; Mottram, J.T.: Influence of boundary conditions and geometric imperfections on lateral-torsional buckling resistance of a pultruded FRP I-beam by FEA. Compos. Struct. 100, 233–242 (2013)

    Article  Google Scholar 

  16. 16.

    Nguyen, T.T.; Chan, T.M.; Mottram, J.T.: Lateral-torsional buckling resistance by testing for pultruded FRP beams under different loading and displacement boundary conditions. Compos. Part B: Eng. 60, 306–318 (2014)

    Article  Google Scholar 

  17. 17.

    Nguyen, T.T.; Chan, T.M.; Mottram, J.T.: Lateral--Torsional buckling design for pultruded FRP beams. Compos. Struct. 133, 782–793 (2015)

    Article  Google Scholar 

  18. 18.

    Thompson, R.H.; Joseph, P.; Delfino, A.: Theoretical and experimental compressive strength of a glass fiber - vinyl ester pultruded composite. J. Compos. Mater. 49(6), 1–10 (2014)

    Google Scholar 

  19. 19.

    Fernandes, L.A.; Gonilha, J.; Correia, J.R.; Silvestre, N.; Nunesa, F.: Web-crippling of GFRP pultruded profiles. Part 1: Experimental study. Compos. Struct. 120, 565–577 (2015)

    Article  Google Scholar 

  20. 20.

    Muttashar, M.; Karunasena, W.; Manalo, A.; Lokuge, W.: Behaviour of hollow pultruded GFRP square beams with different shear span-to-depth ratios. J. Compos. Mater. 50(21), 1–16 (2015)

    Google Scholar 

  21. 21.

    Ascine, F.; Feo, L.; Lamberti, M.; Minghini, F.; Tullini, N.: A closed-form equation for the local buckling moment of pultruded FRP I-beams in major-axis bending. Compos Part B Eng 97, 292–299 (2016)

    Article  Google Scholar 

  22. 22.

    Fascetti, A.; Feo, L.; Nistico, N.; Penna, R.: Web-flange behavior of pultruded GFRP I-beams: A lattice model for the interpretation of experimental results. Compos. Part B Eng. 100, 257–269 (2016)

    Article  Google Scholar 

  23. 23.

    Nunes, F.; Correia, J.R.; Silvestre, N.: Structural behavior of hybrid FRP pultruded beams: Experimental, numerical and analytical studies. Thin-Walled Struct. 106, 201–217 (2016)

    Article  Google Scholar 

  24. 24.

    Vieira, J.D.; Liu, T.; Harries, K.A.: Fleural stability of pultruded glass fiber-reinforced polymer I-sections. Proc. Inst. Civil Engineers-Structures Buildings. 171(11), 855–866 (2017)

    Article  Google Scholar 

  25. 25.

    Prachasaree, W.; Limkatanyu, S.; Kaewjuea, W.; GangaRao, H.V.S.: Simplified buckling- strength determination of pultruded FRP structural beams. Practice Period. Struct. Des. Construc. 24(2), 04018036 (2018)

    Article  Google Scholar 

  26. 26.

    Chawla, H.; Singh, S.B.: Stability and failure characterization of fiber reinforced pultruded beams with different stiffening elements. Part 2: Analytical and numerical studies. Thin-Walled Struct. 141, 606–626 (2018)

    Article  Google Scholar 

  27. 27.

    Ganesan, G.; Kumaran, G.: An experimental study on the behaviour of GFRP pultruded I beam reinforced with CFRP laminates. Int. J. Adv. Tech. Eng. Explo. 5(45), 232–243 (2018)

    Google Scholar 

  28. 28.

    Kasiviswanathan, M.; Upadhyay, A.: Flange buckling behaviour of FRP box-beams: A parametric study. J. Reinf. Plast. Compos. 37(2), 105–117 (2018)

    Article  Google Scholar 

  29. 29.

    Liu, T.; Harries, K.A.: Flange local buckling of pultruded GFRP box beams. Compos. Struct. 189, 463–472 (2018)

    Article  Google Scholar 

  30. 30.

    Fiberline design manual, Version 2.0, Denmark (2002)

  31. 31.

    National Resarch Council of Italy.: Guide for the design and construction of structures made of FRP pultruded elements. National Research Council. Roma (2008)

  32. 32.

    Fibergrade Composite Structures.: Design guide, Dynaform FRP structural shapes. Dallas: Fibergrate Composite Structures. (2011)

  33. 33.

    Bedford Reinforced Plastics: Design guide. Bedford Reinforced Plastics, Bedford. PA (2012)

    Google Scholar 

  34. 34.

    TreadWell Composites.: Structural product guide. Adelaide. SA, Australia: TreadWell Group (2017)

  35. 35.

    Bank, L.C.; Gentry, T.R.; Nadipelli, M.: Local buckling of pultruded FRP beams - Analysis and design. J. Reinf. Plast. Compos. 15, 283–294 (1996)

    Article  Google Scholar 

  36. 36.

    ABAQUS Standard User’s Manual. Hibbitt, K.a.S., Inc., Vol. 1, 2 and 3, Version 6.11-1, USA (2011)

  37. 37.

    Szymczak, C.; Kujawa, M.: Sensitivity analysis of free torsional vibration frequencies of thin-walled laminated beams under axial load. Continum Mech, Thermodyn (2019)

    Google Scholar 

  38. 38.

    Szymczak, C.; Kubiak, T.: Local buckling of composite channel columns. Continuum Mech, Thermodyn (2018)

    Google Scholar 

  39. 39.

    Nguyen T.T.: Lateral-torsional buckling resistance of pultruded fibre reinforced polymer shapes. Ph. D. Thesis, University of Warwick, England. (2014)

  40. 40.

    Trumpf, H.: Local and global stability of plane frame works made of orthotropic FRP-profiles. Ph.D. Thesis, University of Aachen, Germany, Shaker-Verlag (2006)

  41. 41.

    Schafer, B.W.: CUFSM 4.05-finite strip buckling analysis of thin-walled members. Department of Civil Engineering, johns Hopkins University, Baltimore, U.S.A, (http://www.ce.jhu.edu/bschafer/cufsm/) (2012)

  42. 42.

    BSI, Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings, in BS EN 1993-1-1. British Standards Institution: London, UK, (2005)

  43. 43.

    Szalai, J.; Papp, F.: On the theoretical background of the generalization of Ayrton-Perry type resistance formulas. J. Cons. Ste. Resear. 66, 670–679 (2010)

    Article  Google Scholar 

  44. 44.

    Kankanamge, N.D.; Mahendran, M.: Behaviour and design of cold-formed steel beams subject to lateral-torsional buckling. Thin-Walled Struct. 51, 25–38 (2012)

    Article  Google Scholar 

  45. 45.

    Zeinali, E.; Nazari, A.; Showkati, H.: Experimental-Numerical Study on Lateral-Torsional Buckling of PFRP Beams under Pure Bending. Compos, Struct (2020)

    Google Scholar 

  46. 46.

    Devi, S.V.; Singh, T.G.; Singh, K.D.: Cold-formed steel square hollow members with circular perforations subjected to torsion. J. Cons. Ste. Resear. 162, 105730 (2019)

    Article  Google Scholar 

  47. 47.

    Anbarasu, M.; Dar, M.A.: Improved design procedure for battened cold-formed steel built-up columns composed of lipped angles. J. Cons. Ste. Resear. 164, 105781 (2020)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Anbarasu.

Ethics declarations

Conflict of Interests

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Competing Interests

The authors declared that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anbarasu, M., Kasiviswanathan, M. A Simplified Design Method for Lateral–Torsional Buckling of GFRP Pultruded I-Beams. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-020-05208-9

Download citation

Keywords

  • Fiber-reinforced plastic composites
  • FRP beams
  • Glass fiber composite
  • I-beams
  • Lateral–torsional buckling
  • Numerical analysis
  • Pultruded profile