Effect of Grain Size Distribution on California Bearing Ratio (CBR) and Modified Proctor Parameters for Granular Materials


The California bearing ratio (CBR) and modified proctor parameters (maximum dry unit weight \(\gamma_{{d\left( {\max} \right)}}\) and optimum moisture content \(w_{{{\text{opt}}}}\)) are valuable indicators of the compaction quality of subgrades, embankments and granular fills. In the engineering practice, correlations of these variables with granulometric properties of the soil are required, especially since testing for these variables can be time-consuming when a large number of samples are analyzed. In this work, 20 different granular materials with varying grain size distributions were prepared and tested. Their grain size distribution properties and their parameters CBR, \(\gamma_{{d\left( {\max} \right)}}\) and \(w_{{{\text{opt}}}}\) were determined. These results were analyzed along with a compilation of 77 additional experimental results on granular materials reported in the literature. The influence of some granulometric properties on the parameters CBR, \(\gamma_{{d\left( {\max} \right)}}\) and \(w_{{{\text{opt}}}}\) was statistically examined, and some correlations were proposed for these variables. Subsequently, it was demonstrated that the proposed correlations show better accuracy tother reported correlations in the literature. Finally, this work ends with some concluding remarks

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    NCHRP.: Correlation of CBR values with soil index guide for mechanistic and empirical—design for new a rehabilitated pavement structures, Illinois (2001)

  2. 2.

    Satyanarayana, R.; Pavani, K.: Mechanically stabilized soils-regression equation for CBR evaluation. In: Proceedings of the Indian Geotechnical Conference: Geotechnical Engineering - Indian Experience, Chennai, India, pp. 731–734 (2006). ISBN:8184241321

  3. 3.

    Vinod, P.; Reena, C.: Prediction of CBR value of lateritic soils using liquid limit and gradation characteristics data. Highw. Res. J. 1(1), 89–98 (2008)

    Google Scholar 

  4. 4.

    Patel, R.; Desai, M.: CBR predicted by index properties for alluvial soils of South Gujarat. Proceedings of the Indian geotechnical conference, Mumbai, pp. 79–82 (2010)

  5. 5.

    Yildirim, B.; Gunaydin, O.: Estimation of California bearing ratio by using soft computing systems. Expert Syst. Appl. 38(5), 6381–6391 (2011)

    Article  Google Scholar 

  6. 6.

    Attique, R.; Khalid, F.; Hassan, M.: Prediction of California bearing ratio (CBR) and compaction characteristics of granular soils. Acta Geotech. Slov. 14(1), 63–72 (2017)

    Google Scholar 

  7. 7.

    Katte, V.; Mfoyet, S.; Manefouet, B.; Ludovic, A.; Bezeng, L.: Correlation of California bearing ratio (CBR) value with soil properties of road subgrade soil. Geotech. Geol. Eng. 37(1), 217–234 (2019)

    Article  Google Scholar 

  8. 8.

    Blotz, L.; Benson, C.; Boutwell, G.: Estimating optimum water content and maximum dry unit weight for compacted clays. J. Geotech. Geoenviron. Eng. 124(9), 907–912 (1998)

    Article  Google Scholar 

  9. 9.

    Omar, M.; Abdallah, S.; Basma, A.; Barakat, S.: Compaction characteristics of granular soils in the United Arab Emirates. Geotech. Geol. Eng. 21(3), 283–295 (2003)

    Article  Google Scholar 

  10. 10.

    Gurtug, Y.; Sridharan, A.: Compaction behavior and prediction of its characteristics of fine grained soils with particular reference to compaction energy. Soils Found. 44(5), 27–36 (2004)

    Article  Google Scholar 

  11. 11.

    Arvelo, A.: Effects of the soil properties on the maximum dry density obtained from the standard proctor test. Master Thesis, University of Central Florida (2004)

  12. 12.

    Huang, Y.: Pavement Analysis and Design, 2nd edn. Pearson Education, London (2004)

    Google Scholar 

  13. 13.

    Mesri, G.; Vardhanabhuti, B.: Compression of granular materials. Can. Geotech. J. 46(4), 369–392 (2009)

    Article  Google Scholar 

  14. 14.

    Mishra, D.; Tutumluer, E.; Butt, A.: Quantifying effects of particle shape and type and amount of fines on unbound aggregate performance through controlled gradation. Transp. Res. Record J. Transp. Res. Board. 2167, 61–71 (2010)

    Article  Google Scholar 

  15. 15.

    Jiang, Y.; Yuen, L.; Ren, J.: A numerical test method of California bearing ratio on graded crushed rocks using particle flow modeling. J. Traffic Transp. Eng. 2(2), 107–115 (2015)

    Google Scholar 

  16. 16.

    Kwon, J.; Kim, S.; Tutumluer, E.; Wayne, M.: Characterization of unbound aggregate materials considering physical and morphological properties. Int. J. Pavement Eng. 18(4), 303–308 (2017)

    Article  Google Scholar 

  17. 17.

    Mendoza, C.; Caicedo, B.: Elastoplastic framework of relationships between CBR and Young’s modulus for granular material. Road Mater. Pavement Des. 19(8), 1796–1815 (2018)

    Article  Google Scholar 

  18. 18.

    Sreelekshmypillai, G.; Vinod, P.: Prediction of CBR value of fine grained soils at any rational compactive effort. Int. J. Geotech. Eng. 13(6), 558–563 (2019)

    Article  Google Scholar 

  19. 19.

    Sivrikaya, O.; Togrol, E.; Kayadelen, C.: Estimating compaction behavior of fine-grained soils based on compaction energy. Can. Geotech. J. 45(6), 877–887 (2008)

    Article  Google Scholar 

  20. 20.

    Matteo, L.; Bigotti, F.; Ricco, R.: Best-fit model to estimate proctor properties of compacted soils. J. Geotech. Geoenviron. Eng. 135(7), 992–996 (2009)

    Article  Google Scholar 

  21. 21.

    Mutjaba, H.; Farooq, K.; Sivakugan, N.; Das, B.: Correlation between gradational parameters and compaction characteristics of sandy soils. Int. J. Geotech. Eng. 7(4), 395–401 (2013)

    Article  Google Scholar 

  22. 22.

    Araujo, W.; Ruiz, G.: Correlation equations of CBR with index properties of soil in the city of Piura. In: 14th LACCEI International Multi Conference for Engineering, Education and Technology: “Engineering Innovations for Global Sustainability‬”, San Jose, Costa Rica, 20–22 July, pp. 1–7 (2016)

  23. 23.

    Janjua, Z.; Chand, J.: Correlation of CBR with index properties of soil. Int. J. Civ. Eng. Technol. 7(5), 57–62 (2016)

    Google Scholar 

  24. 24.

    Aderinola, O.; Emmanuel, O.; Ajibola, Q.: Correlation of California bearing ratio value of clays with soil index and compaction characteristics. Int. J. Sci. Res. Innov. Technol. 4(4), 12–22 (2017)

    Google Scholar 

  25. 25.

    Bekele, A.: Correlation of CBR with index properties of soils in Sulsulta town. Master Thesis, Addis Ababa Institute of Technology (2017)

  26. 26.

    Ardakani, A.; Kordnaeji, A.: Soil compaction parameters prediction using GMDH-type neural network and genetic algorithm. Eur. J. Environ. Civ. Eng. 23(4), 449–462 (2019)

    Article  Google Scholar 

  27. 27.

    Black, W.: A method of estimating the California bearing ratio of cohesive soils from plasticity data. Géotechnique 12(4), 271–282 (1962)

    Article  Google Scholar 

  28. 28.

    Korfiatis, G.; Manikopoulos, C.: Correlation of maximum dry density and grain size. J. Geotech. Eng. 108(9), 1171–1176 (1982)

    Google Scholar 

  29. 29.

    Brown, S.: Soil mechanics in pavement engineering. Géotechnique 46(3), 383–426 (1996)

    Article  Google Scholar 

  30. 30.

    Breytenbach, J.; Green, P.; Rooy, J.: The relationship between index testing and California bearing ratio values for natural road construction materials in South Africa. J. S. Afr. Inst. Civ. Eng. 52(2), 65–69 (2010)

    Google Scholar 

  31. 31.

    Ferede, Z.: Prediction of California bearing ratio (CBR) value from index properties of soil. Master Thesis, Addis Ababa Institute of Technology (2012)

  32. 32.

    Talukdar, D.: A study of correlation between California Bearing Ratio (CBR) value with other properties of soil. Int. J. Emerg. Technol. Adv. Eng. 4(1), 559–562 (2014)

    Google Scholar 

  33. 33.

    Look, B.: Spatial and statistical distribution models using the CBR test. Aust. Geomech. 44(1), 37–41 (2009)

    Google Scholar 

  34. 34.

    McGough, P.: A method for the prediction of soaked CBR of remolded samples from standard classification tests. Aust. Geomech. 45(4), 75–86 (2010)

    Google Scholar 

  35. 35.

    Patra, C.; Sivakugan, N.; Das, B.; Rout, S.: Correlations for relative density of clean sand with median grain size and compaction energy. Int. J. Geotech. Eng. 4(2), 195–203 (2010)

    Article  Google Scholar 

  36. 36.

    Saklecha, P.; Katpatal, Y.; Rathore, S.; Agarawal, D.: Spatial correlation of mechanical properties of subgrade soil for foundation characterization. Int. J. Comput. Appl. 36(11), 20–25 (2011)

    Google Scholar 

  37. 37.

    Singh, D.; Reddy, K.; Yadu, L.: Moisture and compaction based statistical model for estimating CBR of fine-grained subgrade soils. Int. J. Earth Sci. Eng. 4(6), 100–103 (2011)

    Google Scholar 

  38. 38.

    Leliso, Y.: Correlation of CBR value with soil index properties for Addis Abba subgrade soils. Master Thesis, Addis Ababa University (2013)

  39. 39.

    Gratchev, I.; Pitawala, S.; Gurung, N.; Monteiro, E.: A chart to estimate CBR of plastic soils. Aust. Geomech. J. 53(1), 1–5 (2018)

    Google Scholar 

  40. 40.

    Verma, G.; Kumar, B.: Prediction of compaction parameters for fine-grained and coarse-grained soils: a review. Int. J. Geotech. Eng. (2019). https://doi.org/10.1080/19386362.2019.1595301

    Google Scholar 

  41. 41.

    Moreno, N.: Zonificación geotécnica de los suelos en Barranquilla. In: Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology, “Excellence in Engineering to Enhance a Country’s Productivity”,‬ Guayaquil, Ecuador, 22–24 July 2014, pp. 1–9 (2014)

Download references

Author information



Corresponding author

Correspondence to Jose Duque.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duque, J., Fuentes, W., Rey, S. et al. Effect of Grain Size Distribution on California Bearing Ratio (CBR) and Modified Proctor Parameters for Granular Materials. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04673-6

Download citation


  • California bearing ratio (CBR)
  • Grain size distribution
  • Modified proctor
  • Granular soils