Investigation on the Oxidation Behavior of Dual-Phase Silicon-Containing Steel at Different Beginning Oxidation Temperatures

Abstract

The weak reduction atmosphere, which causes different beginning oxidation temperatures, is often used in the forepart of an industrial furnace to reduce the formation of oxide scale. The present study analyzed the oxidation behavior of a dual-phase Si-containing steel at different beginning oxidation temperatures based on the industrial reheating process. The results indicate that the adoption of the weak reduction atmosphere before the intense oxidation temperature had no profound effects on the oxidation mass gain and the distribution of Fe2SiO4. Therefore, the end temperature of the weak reduction atmosphere must be higher than the intense oxidation temperature. Moreover, the oxidation mass gain and the penetration depth of Fe2SiO4 gradually decreased with the increase in beginning oxidation temperature when the heating temperature was higher than the intense oxidation temperature of the steel. In addition, the oxidation rate remained constant when the heating temperature was higher than the intense oxidation temperature of the steel; thus, oxidation mass gain followed a linear law with time. Furthermore, voids that appeared in oxide scales were attributed to the formation of Fe2SiO4/FeO and volatile products.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Ginzburg, V.: B: Steel-rolling technology: theory and practice. Marcel Dekker, New York (1989)

    Google Scholar 

  2. 2.

    He, B.; Xu, G.; Zhou, M.X.; Yuan, Q.: Effect of oxidation temperature on the oxidation process of silicon-containing steel. Metals 6, 137–145 (2016)

    Article  Google Scholar 

  3. 3.

    Okada, H.; Fukagawa, T.; Ishihara, H.; Okamoto, A.; Azuma, M.; Matsuda, Y.: Effects of hot-rolling and descaling condition on red scale defects formation. ISIJ Int. 80, 849–854 (1994)

    Google Scholar 

  4. 4.

    Zhou, M.X.; Xu, G.; Wang, L.; Yuan, Q.: The varying effects of uniaxial compressive stress on the bainitic transformation under different austenitization temperatures. Metals 6, 119–130 (2016)

    Article  Google Scholar 

  5. 5.

    Hu, H.J.; Xu, G.; Wang, L.; Xue, Z.L.; Zhang, Y.L.; Liu, G.H.: The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Mater. Des. 84, 95–99 (2015)

    Article  Google Scholar 

  6. 6.

    Liang, W.; Yuan, Q.; Chen, G.H.; Liu, M.; Qiao, W.W.: Fracture evolution in ferrite/martensite dual phase flange steel. Ironmak. Steelmak. (2020). https://doi.org/10.1080/03019233.2020.1733779

    Article  Google Scholar 

  7. 7.

    Yuan, Q.; Xu, G.; Liang, W.W.; Zhou, M.X.; Hu, H.J.: Effects of oxygen concentration on the passivation of Si-containing steel during high-temperature oxidation. Corros. Rev. 4, 385–393 (2018)

    Article  Google Scholar 

  8. 8.

    Yuan, Q.; Xu, G.; Liang, W.W.; He, B.; Zhou, M.X.: Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating. Int. J. Min. Met. Mater. 25, 164–172 (2018)

    Article  Google Scholar 

  9. 9.

    Yang, Y.L.; Yang, C.H.; Lin, S.N.: Effects of Si and its content on the scale formation on hot-rolled steel strips. Mater. Chem. Phys. 2, 566–571 (2008)

    Article  Google Scholar 

  10. 10.

    Yang, C.H.; Lin, S.N.; Chen, C.H.: Effect of temperature and straining on the oxidation behavior of electrical steels. Oxid. Met. 72, 145–157 (2009)

    Article  Google Scholar 

  11. 11.

    Kusabiraki, K.; Watanabe, R.; Ikehata, T.: High-temperature oxidation behavior and scale morphology of Si-containing steels. ISIJ Int. 47, 1329–1334 (2007)

    Article  Google Scholar 

  12. 12.

    Suarez, L.; Schneider, J.; Houbaert, Y.: High-temperature oxidation of Fe–Si alloys in the temperature range 900–1250 °C. Defect Diffus, Forum (2008)

    Google Scholar 

  13. 13.

    Suarez, L.; Schneider, J.; Houbaert, Y.: Effect of Si on High-temperature oxidation of steel during hot rolling. Defect Diffus, Forum (2008)

    Google Scholar 

  14. 14.

    Okada, H.; Fukagawa, T.; Ishihara, H.: Prevention of red scale formation during hot rolling of steels. ISIJ Int. 35, 886–891 (1995)

    Article  Google Scholar 

  15. 15.

    Fukagawa, T.; Okada, H.; Maeharara, Y.: Mechanical of red scale defect formation in Si-added hot-rolled steels. ISIJ Int. 34, 906–911 (1994)

    Article  Google Scholar 

  16. 16.

    Liu, X.J.; Cao, G.M.; He, Y.Q.; Jia, T.; Liu, Z.Y.: Effect of temperature on scale morphology of Fe–15 Si alloy. J. Iron Steel Res. Int. 20, 73–78 (2013)

    Article  Google Scholar 

  17. 17.

    Takeda, M.; Onishi, T.: Oxidation behavior and scale properties on the Si containing steels. Mater. Sci. Forum 522–523, 477–488 (2006)

    Article  Google Scholar 

  18. 18.

    Li, S.J.; Liu, Y.B.; Zhang, W.; Sun, Q.S.; Wang, L.P.: Effects of silicon on spring steel oxidation rate under 2% residual oxygen atmosphere. J. Iron. Steel Res. Int. 27, 55–60 (2015). (In Chinese)

    Google Scholar 

  19. 19.

    Abuluwefa, H.; Guthrie, R.I.L.; Ajersch, F.: The effect of oxygen concentration on the oxidation of low-carbon steel in the temperature range 1000 to 1250 °C. Oxid. Met. 46, 423–440 (1996)

    Article  Google Scholar 

  20. 20.

    Upthegrove, C.: Scaling of steel at heat-treating temperatures. George Banta Publ., Menasha (1933)

    Google Scholar 

  21. 21.

    Yuan, Q.; Xu, G.; Zhou, M.X.; He, B.: The effect of the Si content on the morphology and amount of Fe2SiO4 in low carbon steels. Metals 6, 94–102 (2016)

    Article  Google Scholar 

  22. 22.

    Yuan, Q.; Xu, G.; Zhou, M.X.; He, B.: New insights into the effects of silicon content on the oxidation process in silicon-containing steels. Int. J. Miner. Metall. Mater. 23, 1–8 (2016)

    Article  Google Scholar 

  23. 23.

    Mouayd, A.A.; Koltsov, A.; Sutter, E.; Tribollet, B.: Effect of silicon content in steel and oxidation temperature on scale growth and morphology. Mater. Chem. Phys. 143, 996–1004 (2014)

    Article  Google Scholar 

  24. 24.

    Cao, G.M.; Liu, X.J.; Sun, B.; Liu, Z.Y.: Morphology of oxide scale and oxidation kinetics of low carbon steel. Iron Steel Res. Int. 21, 335–341 (2014)

    Article  Google Scholar 

  25. 25.

    Logani, R.C.; Smeltzer, W.W.: The development of the wustite-fayalite scale on an iron-15 wt% silicon alloy at 1000 °C. Oxid Met. 3, 15–32 (1971)

    Article  Google Scholar 

  26. 26.

    Adachi, T.; Meier, G.H.: Oxidation of iron–silicon alloys. Oxid. Met. 27, 347–366 (1987)

    Article  Google Scholar 

  27. 27.

    Birks, N.; Meier, G.H.; Pettit, F.S.: Introduction to the high-temperature oxidation of metals. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  28. 28.

    Xu, G.X.; Wang, X.Y.: Structure of matter [M], 2nd edn. Science Press, Beijing (2010)

    Google Scholar 

  29. 29.

    Wang, P.W.; Feng, Y.P.; Roth, W.L.; Corbett, J.W.: Diffusion behavior of implanted iron in fused silica glass. J. Non-Cryst. Solids 104, 81–84 (1988)

    Article  Google Scholar 

  30. 30.

    Li, Y.; Fruehan, R.J.; Lucas, J.A.; Belton, G.R.: The chemical diffusivity of oxygen in liquid iron oxide and a calcium ferrite. Metall. Mater. Trans. B 31, 1059–1068 (2000)

    Article  Google Scholar 

  31. 31.

    Zhang, L.; Zhang, W.; Zhang, J.H.; Li, G.Q.: Oxidation kinetics and oxygen capacity of Ti-bearing blast furnace slag under dynamic oxidation conditions. Metals 6, 105–120 (2016)

    Article  Google Scholar 

  32. 32.

    Garnaud, G.; Rapp, R.A.: Thickness of the oxide layers formed during the oxidation of iron. Oxid. Met. 11, 193–198 (1977)

    Article  Google Scholar 

  33. 33.

    Liu, X.J.; Cao, G.M.; Nie, D.M.; Liu, Z.Y.: Mechanism of black strips generated on surface of hot-rolled silicon steel. Iron Steel Res. Int. 20, 54–59 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the Post-doctoral Innovative Research Post of Hubei Province, the National Natural Science Foundation of China (NSFC) (No 51874216), the Major Projects of Technology Innovation of Hubei Province (2017AAA116), and Hebei Joint Research Fund for Iron and Steel (E2018318013).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qing Yuan or Guang Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yuan, Q., Tian, J. et al. Investigation on the Oxidation Behavior of Dual-Phase Silicon-Containing Steel at Different Beginning Oxidation Temperatures. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04664-7

Download citation

Keywords

  • Silicon-containing steel
  • Oxidizing temperature
  • Oxidation rate
  • Microstructure
  • Fe2SiO4