Analysis of Optimal Dynamic Manipulation for Robotic Manipulator Based on Pontryagin’s Minimum Principle

Abstract

A branch of dynamic manipulation is robotic throwing which recently plays a major role in the performance improvement of robotic manipulations. This paper aims at the optimal throwing using a robotic arm. Launching the captured object to a specified target by minimum control effort with the specified final time is the mission of the throwing robot in this study. Taking into account the indirect method based on the fundamental theorem of the calculus of variations, the optimal throwing problem is defined as the optimal control problem (OCP). By employing Pontryagin’s Minimum Principle (PMP), the optimality conditions are extracted and then considering the throwing equation as a moving-end boundary condition (BC), the corresponding OCP converts to a two-point boundary value problem (BVP). By applying the moving-end BCs, the best releasing condition is automatically obtained. Next, a simple algorithm is presented to solve the resulting BVP which leads us to the multiple optimal solutions that have been sorted according to the defined cost function values. This multiplicity of solutions allows for the selection of the most practical optimal solution. The feasibility of the derived framework is validated by some simulations and experiments done for a fabricated throwing robot.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Lippiello, V.; Ruggiero, F.; Siciliano, B.: The effect of shapes in input-state linearization for stabilization of nonprehensile planar rolling dynamic manipulation. IEEE Robot. Autom. Lett. 1(1), 492–499 (2016)

    Article  Google Scholar 

  2. 2.

    Tarvirdizadeh, B.; Yousefi-Koma, A.: Dynamic object manipulation by a flexible robotic arm: theory and experiment. Int. J. Robot. Autom. 27(3), 263 (2012)

    Google Scholar 

  3. 3.

    Maeda, Y.; Nakamura T.; Arai, T.: Motion planning of robot fingertips for graspless manipulation. In: IEEE International Conference on Robotics and Automation, ICRA’04. Vol. 3, (2004)

  4. 4.

    Zeng, A., et al.: Tossingbot: Learning to throw arbitrary objects with residual physics,” arXiv preprint arXiv:1903.11239 (2019)

  5. 5.

    Paruchuri, P.; Chatterjee, D.: Discrete time pontryagin maximum principle under state-action-frequency constraints. IEEE Trans. Automs. Control 64(10), 4202–4208 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Nikoobin, A.; Moradi, M.: Indirect solution of optimal control problems with state variable inequality constraints: finite difference approximation. Robotica 35(1), 50–72 (2017)

    Article  Google Scholar 

  7. 7.

    Wang, Y.; Wei, X.; Wang, X.; Yang, W.; Dou, M.; Song, S.; Gerling, D.: Fast response model predictive torque and flux control with low calculation effort for PMSMs. IEEE Trans. Ind. Inf. 15(10), 5531–5540 (2019)

    Article  Google Scholar 

  8. 8.

    Feng, X.; Jia, Y.; Shijie, X.: Inertia-free minimum-angular-motion detumbling control of spacecraft. J. Guid. Control Dyn. 42(3), 678–683 (2019)

    Article  Google Scholar 

  9. 9.

    Ge, X.; Yao, Q.; Chen, L.: Control strategy of optimal deployment for spacecraft solar array system with initial state uncertainty. Appl. Math. Mech. 39(10), 1437–1452 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Abbas, H.; Kim, Y.; Siegel, J.B.; Rizzo, D.M.: Synthesis of Pontryagin’s maximum principle analysis for speed profile optimization of all-electric vehicles. J. Dyn. Syst. Meas. Control 141(7), 719 (2019)

    Article  Google Scholar 

  11. 11.

    Nguyen, B.-H.; German, R.; Trovão, J.P.F.; Bouscayrol, A.: Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of pontryagin’s minimum principle. IEEE Trans. Vehic. Technol. 68(1), 203–212 (2019)

    Article  Google Scholar 

  12. 12.

    Kim, N.; Jeong, J.; Zheng, C.: Adaptive energy management strategy for plug-in hybrid electric vehicles with Pontryagin’s minimum principle based on daily driving patterns. Int. J. Precis. Eng. Manuf. Green Technol. 6(3), 539–548 (2019)

    Article  Google Scholar 

  13. 13.

    Xie, S.; Hu, X.; Xin, Z.; Brighton, J.: Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus. Appl. Energy 236, 893–905 (2019)

    Article  Google Scholar 

  14. 14.

    Gallant, A.; Gosselin, C.: Extending the capabilities of robotic manipulators using trajectory optimization. Mech. Mach. Theory 121, 502–514 (2018)

    Article  Google Scholar 

  15. 15.

    Zheng, K.; Hu, Y.; Wu, B.; Guo, X.: New trajectory control method for robot with flexible bar-groups based on workspace lattices. Robot. Auton. Syst. 111, 44–61 (2019)

    Article  Google Scholar 

  16. 16.

    Manor, G.; Ben-Asher, J.Z.; Rimon, E.: Time optimal trajectories for a mobile robot under explicit acceleration constraints. IEEE Trans. Aerosp. Electron. Syst. 54(5), 2220–2232 (2018)

    Article  Google Scholar 

  17. 17.

    Fang, Y.; Jie, H.; Liu, W.; Shao, Q.; Qi, J.; Peng, Y.: Smooth and time-optimal S-curve trajectory planning for automated robots and machines. Mech. Mach. Theory 137, 127–153 (2019)

    Article  Google Scholar 

  18. 18.

    Rahaghi, M.I.; Barat, F.: Solving nonlinear optimal path tracking problem using a new closed loop direct–indirect optimization method: application on mechanical manipulators”. Robotica 37(1), 39–61 (2019)

    Article  Google Scholar 

  19. 19.

    Shafei, A.M.; Korayem, M.H.: Theoretical and experimental study of dynamic load-carrying capacity for flexible robotic arms in point-to-point motion. Optim. Control Appl. Methods 38(6), 963–972 (2017)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Nikoobin, A.; Moradi, M.: Analysis of optimal balancing for robotic manipulators in repetitive motions. J. Dyn. Syst. Meas. Control 140(8), 081002 (2018)

    Article  Google Scholar 

  21. 21.

    Moradi, M.; Naraghi, M.; Kamali, A.E.: Simultaneous design of parameters and controller of robotic manipulators: closed loop approach to practical implementation. Adv. Robot. 32(3), 105–121 (2018)

    Article  Google Scholar 

  22. 22.

    Yedeg, E.L.; Wadbro, E.: State constrained optimal control of a ball pitching robot. Mech. Mach. Theory 69, 337–349 (2013)

    Article  Google Scholar 

  23. 23.

    Shoji, Takuya; Katsumata, Shunsuke; Nakaura, Shigeki; Sampei, Mitsuji: Throwing motion control of the springed pendubot. IEEE Trans. Control Syst. Technol. 21(3), 950–957 (2013)

    Article  Google Scholar 

  24. 24.

    Kim, C.H.; Sugano, S.: Executing optimized throwing motion on robot arm with free joint. Adv. Robot. 30(24), 1571–1578 (2016)

    Article  Google Scholar 

  25. 25.

    Nagayama, T.; Ishihara, H.; Tomori, H.; Nakamura, T.: Verification of throwing operation by a manipulator with variable viscoelastic joints with straight-fiber-type artificial muscles and magnetorheological brakes. Adv. Robot. 30(21), 1365–1379 (2016)

    Article  Google Scholar 

  26. 26.

    Lee, Y.; Sun, S.-H.; Somasundaram, S.; Hu, E.S.; Lim, J. J.: Composing complex skills by learning transition policies. International Conference on Learning Representations, vol. 3, (2019)

  27. 27.

    Schilling, R.J.: Fundamentals of Robotics: Analysis and Control. Prentice-Hall, NJ, Upper Saddle River (1998)

    Google Scholar 

  28. 28.

    Kirk, D.E.: Optimal Control Theory: An Introduction. Dover Publication, New York (2004)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amin Nikoobin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asgari, M., Nikoobin, A. Analysis of Optimal Dynamic Manipulation for Robotic Manipulator Based on Pontryagin’s Minimum Principle. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04663-8

Download citation

Keywords

  • Dynamic manipulation
  • Optimal control
  • Indirect method
  • Pontryagin’s minimum principle