An Investigation of Physicochemical and Biological Properties of Rheum emodi-Mediated Bimetallic Ag–Cu Nanoparticles


An eco-friendly and cost-effective technique for the synthesis of R. emodi roots extract (RERE)-mediated bimetallic silver–copper nanoparticles (Ag–Cu NPs) with anticancer and antibacterial applications are reported in the present investigation. Ag–Cu NPs were characterized using different techniques such as UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy and X-ray diffraction (XRD) to reveal physicochemical properties. The XRD analysis illustrates the face-centered cubic crystallinity of Ag–Cu NPs with \(Fm\bar{3}m\) space group and space group no. 225. FTIR analysis portrays that the phytochemicals present in the RERE play a key role in stabilizing the Ag–Cu NPs. The optical analysis was carried out through UV–Vis spectroscopy. TEM analysis shows that Ag–Cu NPs are spherical in dimension with an average particle size of range between 40 and 50 nm. SAED ring pattern of Ag–Cu NPs reveals the crystalline nature which completely complements the XRD studies. In the present study, anticancer and antibacterial activities were evaluated against breast cancer cell lines (MDA-MB-231) and bacterial strains (Escherichia coli and Staphylococcus aureus).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Shimomura, I.; Yamamoto, Y.; Ochiya, T.: Synthetic lethality in lung cancer-from the perspective of cancer genomics. Medicines 6, 1–13 (2019)

    Article  Google Scholar 

  2. 2.

    Fouad, Y.A.; Aanei, C.: Revisiting the hallmarks of cancer. Am. J. Cancer Res. 5, 1016–1036 (2017)

    Google Scholar 

  3. 3.

    Kuswandi, B.: Environmental friendly food nano-packaging. Environ. Chem. Lett. 15, 205–221 (2017)

    Article  Google Scholar 

  4. 4.

    Kunduru, K.R.; Nazarkovsky, M.; Farah, S.; Pawar, R.P.; Bas, A.; Domb, A.J.: Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. Water Purif. 1, 33–74 (2017)

    Article  Google Scholar 

  5. 5.

    Nair, A.S.; Tom, R.T.; Kumar, V.R.; Subramaniam, C.; Pradeep, T.: Chemical interactions at noble metal nanoparticle surfaces: catalysis, sensors and devices. Cosmos 3, 103–124 (2007)

    Article  Google Scholar 

  6. 6.

    Bhattacherjee, A.; Ghosh, T.; Datta, A.: Green synthesis and characterization of antioxidant-tagged gold nanoparticle (X-GNP) and studies on its potent antimicrobial activity. J. Exp. Nanosci. 13, 50–61 (2018)

    Article  Google Scholar 

  7. 7.

    Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.: Green synthesis of metallic nanoparticles via biological entities. Materials 8, 7278–7308 (2015)

    Article  Google Scholar 

  8. 8.

    Singh, J.; Dutta, T.; Kim, K.; Rawat, M.; Samddar, P.; Kumar, P.: Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 1–24 (2018)

    Article  Google Scholar 

  9. 9.

    Schrofel, A.; Kratošova, G.; Šafar, I.; Ikova, M.S.; Raška, I.; Shor, L.M.: Applications of biosynthesized metallic nanoparticles: a review. Acta Biomater. 10, 4023–4042 (2018)

    Article  Google Scholar 

  10. 10.

    Venkatesh, N.; Bhowmik, H.; Kuila, A.: Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 4, 1–11 (2018)

    Google Scholar 

  11. 11.

    Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J.: Synthesis and applications of noble metal nanoparticles: a review. Adv. Sci. Eng. Med. 9, 527–544 (2017)

    Article  Google Scholar 

  12. 12.

    Zhang, X.F.; Liu, Z.G.; Shenand, W.; Gurunathan, S.: Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Eur. Int. J. Mol. Sci. 17, 1–34 (2016)

    Google Scholar 

  13. 13.

    He, Y.; Wei, F.; Ma, Z.; Zhang, H.; Yang, Q.; Yao, B.; Huang, Z.; Li, J.; Zenga, C.; Zhang, Q.: Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv. 7, 39842–39851 (2017)

    Article  Google Scholar 

  14. 14.

    Lara, H.H.; Turrent, L.I.; Treviño, E.G.; Singh, D.K.: Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. J. Nanobiotechnol. 9, 1–9 (2011)

    Article  Google Scholar 

  15. 15.

    Jo, D.H.; Leeand, T.G.; Kim, J.H.: Nanotechnology and nanotoxicology in retinopathy. Int. J. Mol. Sci. 12, 8288–8301 (2011)

    Article  Google Scholar 

  16. 16.

    Li, Y.; Yang, C.; Yin, X.; Sun, Y.; Weng, J.; Zhou, J.; Feng, B.: Inflammatory responses to micro/nano-structured titanium surfaces with silver nanoparticles in vitro. J. Mater. Chem. B7, 3546–3559 (2019)

    Article  Google Scholar 

  17. 17.

    Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marraand, V.; Galdiero, M.: Silver nanoparticles as potential antiviral agents. Molecules 16, 8894–8918 (2011)

    Article  Google Scholar 

  18. 18.

    Kajani, A.A.; Bordbar, A.K.; Esfahani, S.H.Z.; Khosropourb, A.R.; Razmjou, A.: Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccataextract. RSC Adv. 4, 61394–61403 (2014)

    Article  Google Scholar 

  19. 19.

    Samari, F.; Salehipoor, H.; Eftekharb, E.; Yousefinejad, S.: Low-temperature biosynthesis of silver nanoparticles using mango leaf extract: catalytic effect, antioxidant properties, anticancer activity and application for colorimetric sensing. New J. Chem. 42, 15905–15916 (2018)

    Article  Google Scholar 

  20. 20.

    Khatoon, U.T.; Rao, G.V.S.N.; Mantravadia, K.M.; Oztekin, Y.: Strategies to synthesize various nanostructures of silver and their applications—a review. RSC Adv. 8, 19739–19753 (2018)

    Article  Google Scholar 

  21. 21.

    Yugandhar, P.; Vasavi, T.; Devi, P.U.M.; Savithramma, N.: Bioinspired green synthesis of copper oxide Nanoparticles from Syzygiumalternifolium(Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl. Nanosci. 7, 417–427 (2017)

    Article  Google Scholar 

  22. 22.

    Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C.: The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 025004 (2011)

    Article  Google Scholar 

  23. 23.

    Liu, Y.; Wei, S.; Gao, W.: Ag/ZnO heterostructures and their photocatalytic activity under visible light: effect of reducing medium. J. Hazard. Mater. 287, 59–68 (2015)

    Article  Google Scholar 

  24. 24.

    Sun, Y.; Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    Article  Google Scholar 

  25. 25.

    Tan, K.S.; Cheong, K.Y.: Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route. J. Nanopart. Res. 15, 1–29 (2013)

    Google Scholar 

  26. 26.

    Tang, X.F.; Yang, Z.G.; Wang, W.J.: A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids Surf. A 360, 99–104 (2010)

    Article  Google Scholar 

  27. 27.

    Singh, M.; Sinha, I.; Mandal, R.K.: Synthesis of nanostructured Ag–Cu alloy ultra-fine particles. Mater. Lett. 63, 2243–2245 (2009)

    Article  Google Scholar 

  28. 28.

    Liu, J.; Zou, S.; Xiao, L.; Fan, J.: Well-dispersed bimetallic nanoparticles confined in mesoporous metal oxides and their optimized catalytic activity for nitrobenzene hydrogenation. Catal. Sci. Technol. 4, 441–446 (2014)

    Article  Google Scholar 

  29. 29.

    Singh, P.; Garg, A.; Pandit, S.; Mokkapati, V.R.S.S.; Mijakovic, I.: Antimicrobial effects of biogenic nanoparticles. Nanomaterials 8, 1–19 (2003)

    Google Scholar 

  30. 30.

    Kalinska, A.; Jaworski, S.; Wierzbicki, M.; Gołebiewski, M.: Silver and copper nanoparticles—an alternative in future mastitis treatment and prevention? Int. J. Mol. Sci. 20, 1–13 (2019)

    Article  Google Scholar 

  31. 31.

    Ismail, M.; Khan, M.I.; Khan, S.A.; Qayum, M.; Khan, M.A.; Anwar, Y.; Akhtar, K.; Asiri, A.M.; Khan, S.B.: Green synthesis of antibacterial bimetallic Ag–Cu nanoparticles for catalytic reduction of persistent organic pollutants. J. Mater. Sci.: Mater. Electron. 29, 20840–20855 (2018)

    Google Scholar 

  32. 32.

    Rocha, O.R.; Valadez, M.C.; Martinez, A.R.H.; Mezcorrales, R.G.; Alvarez, R.A.B.; Hurtado, R.B.; Beleno, Y.D.; Nunez, C.E.M.; Rodriguez, A.P.; Chavez, H.A.; Acosta, M.F.: Green synthesis of Ag-Cu nanoalloys using Opuntia ficus-indica. J. Electron. Mater. 46, 802–807 (2017)

    Article  Google Scholar 

  33. 33.

    Chitturi, K.L.; Garimella, S.; Marapaka, A.K.; Kudle, R.; Merugu, R.: Single pot green synthesis, characterization, antitumor antibacterial, antioxidant activity of bimetallic silver and copper nanoparticles using fruit pulp of palmyra fruit. J. Bionanosci. 12, 1–6 (2016)

    Google Scholar 

  34. 34.

    Thakore, S.I.; Nagar, P.S.; Jadeja, R.N.; Thounaojam, M.; Devkar, R.V.; Rathore, P.S.: Sapota fruit latex mediated synthesis of Ag, Cu mono and bimetallic nanoparticles and their in vitro toxicity studies. Arab. J. Chem. 12, 694–700 (2019)

    Article  Google Scholar 

  35. 35.

    Ashishie, P.B.; Anyama, C.A.; Ayi, A.A.; Oseghale, C.O.; Adesuji, E.T.; Labulo, A.H.: Green synthesis of silver monometallic and copper-silver bimetallic nanoparticles using Kigelia africana fruit extract and evaluation of their antimicrobial activities International. J. Phys. Sci. 13, 24–32 (2018)

    Google Scholar 

  36. 36.

    Alavi, M.; Karimi, N.: Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artif. Cells Nanomed. Biotechnol. 46, 399–413 (2018)

    Article  Google Scholar 

  37. 37.

    Nazir, S.; Sharma, M.; Saxena, M.; Abrar, M.; Ajaz, M.: Rheum emodi: phytochemistry, bioactive compounds and their biological activity. Int. J. Phytopharmacol. 4(4), 272–276 (2013)

    Google Scholar 

  38. 38.

    Rajkumar, V.; Guha, G.; Kumar, R.A.: Antioxidant and anti-cancer potentials of Rheum emodi rhizome extracts. Evid. Based Complem. Altern. Med. 2011, 1–9 (2011)

    Article  Google Scholar 

  39. 39.

    Prateeksha, S.; Mohd, Aslam Y.; Brahma, N.S.; Surya, S.; Ravindra, N.K.; Saba, Siddiqui S.; Abdel-Azeem, A.M.; Fraceto, L.F.; Dashora, K.; Gupta, V.K.: Chrysophanol: a natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules 9(68), 1–24 (2019)

    Google Scholar 

  40. 40.

    Sharma, D.; Ledwani, L.; Bhatnagar, N.: Antimicrobial, and cytotoxic potential of silver nanoparticles synthesized using Rheum emodi roots extract. New Front. Chem. 24, 121–135 (2015)

    Google Scholar 

  41. 41.

    Sharma, D.; Parveen, K.; Oza, A.; Ledwani, L.: Synthesis of anthraquinone-capped TiO2 nanoparticles using R. emodi roots: preparation, characterization and cytotoxic potential. RendicontiLincei. Scienze Fisiche e Naturali 29, 649–658 (2018)

    Article  Google Scholar 

  42. 42.

    Sharma, D.; Ledwani, L.; Mehrotra, T.; Kumar, N.; Pervez, N.; Kumar, R.: Biosynthesis of hematite nanoparticles using Rheum emodi and their antimicrobial and anticancerous effects in vitro. J. Photochem. Photobiol., B (2020).

    Article  Google Scholar 

  43. 43.

    Sahin, B.; Aygun, A.; Gunduz, H.; Sahin, K.; Demir, E.; Akocak, S.; Sen, F.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B Biointerfaces 163, 119–124 (2018)

    Article  Google Scholar 

  44. 44.

    Iglesias-Silva, E.; Rivas, J.; LeonIsidro, L.M.; Lopez-Quintela, M.A.: Synthesis of silver-coated magnetite. Nanopart. J. Noncryst. Solids 353, 829–831 (2007)

    Article  Google Scholar 

  45. 45.

    Valodkar, M.; Modi, S.; Pal, A.; Thakore, S.: Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater. Res. Bull. 46, 384–389 (2011)

    Article  Google Scholar 

  46. 46.

    Liu, X.; Zhang, F.; Huang, R.; Pan, C.; Zhu, J.: Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods. Cryst. Growth Des. 8, 1916–1923 (2008)

    Article  Google Scholar 

  47. 47.

    Ren, J.; Meng, S.: Atomic structure and bonding of water over layer on Cu (110): the borderline for intact and dissociative adsorption. J. Am. Chem. Soc. 128, 9282–9283 (2006)

    Article  Google Scholar 

  48. 48.

    Sharma, M.; Hazra, S.; Basu, S.: Synthesis of heterogeneous Ag-Cu bimetallic monolith with different mass ratios and their performances for catalysis and antibacterial activity. Adv. Powder Technol. 28, 3085–3094 (2017)

    Article  Google Scholar 

  49. 49.

    Shukla, V.K.; Singh, R.P.; Pandey, A.C.: Black pepper assisted biomimetic synthesis of silver. Nanopart. J. Alloys Compd. 507, L13–L16 (2010)

    Article  Google Scholar 

  50. 50.

    Carvajal, J.R.: FULLPROF, a Rietveld and pattern matching analysis program, Laboratoire Leon Brillouin. CEA-CNRS, France

  51. 51.

    Ansari, Z.; Saha, A.; Singha, S.S.; Sen, K.: Phytomediated generation of Ag, CuO and Ag-Cu nanoparticles for dimethoate sensing. J. Photochem. Photobiol. A Chem. 367, 200–211 (2018)

    Article  Google Scholar 

  52. 52.

    Ansari, Z.; Dhara, S.; Bandyopadhyay, B.; Saha, A.; Sen, K.: Spectral anion sensing and γ-radiation induced magnetic modifications of polyphenol generated Ag-nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 156, 98–104 (2016)

    Article  Google Scholar 

  53. 53.

    Singha, D.; Sahu, D.K.; Sahu, K.: Coupling of molecular transition with the surface plasmon resonance of silver nanoparticles inside the restricted environment of reverse micelles. ACS Omega 2, 5494–5503 (2017)

    Article  Google Scholar 

  54. 54.

    Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basub, R.; Nandy, P.: Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 5, 4993–5003 (2015)

    Article  Google Scholar 

  55. 55.

    Halder, M.; Islam, M.M.; Ansari, Z.; Ahammad, S.; Sen, K.; Islam, S.M.: Biogenic nano-CuO-catalyzed facile C − N cross-coupling reactions: scope and mechanism. ACS Sustain. Chem. Eng. 7, 648–657 (2017)

    Article  Google Scholar 

  56. 56.

    Shankar, S.S.; Ahmad, A.; Sastry, M.: Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 19, 1627–1631 (2003)

    Article  Google Scholar 

  57. 57.

    Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668 (2008)

    Article  Google Scholar 

  58. 58.

    Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T.: Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69, 4278–4281 (2003)

    Article  Google Scholar 

  59. 59.

    Jannathul, M.F.; Lalitha, F.: Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog. Biomater. 4, 113–121 (2015)

    Article  Google Scholar 

  60. 60.

    Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J.: The bactericidal effect of silver nanoparticles. Nanotechnology 6, 2346–2353 (2005)

    Article  Google Scholar 

Download references


The authors are thankful to Malaviya National Institute of Technology, Jaipur, for providing the facilities for characterizations. In addition, the authors are also thanks to Rungta Hospital, Jaipur and Department of Zoology, Panjab University, Chandigarh, India, for antimicrobial and MTT tests.

Author information



Corresponding author

Correspondence to Lalita Ledwani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Ledwani, L., Kumar, N. et al. An Investigation of Physicochemical and Biological Properties of Rheum emodi-Mediated Bimetallic Ag–Cu Nanoparticles. Arab J Sci Eng (2020).

Download citation


  • Rheum emodi roots
  • FTIR
  • UV–Vis spectroscopy
  • Rietveld refinement
  • XRD
  • TEM
  • Antibacterial and anticancer