Optimization by Using Response Surface Methodology of the Preparation from Plantain Spike of a Micro-/Mesoporous Activated Carbon Designed for Removal of Dyes in Aqueous Solution


Response surface methodology based on central composite design was used as a tool to optimize the preparation of micro-/mesoporous activated carbon from plantain spike. The impact of three variables: activation temperature, activation time, and H3PO4 impregnation ratio, were evaluated on the iodine number and the methylene blue (MB) index according to the model-determined conditions. These three variables have been extensively studied using analysis of variance to assess their significance. Each response was described by a second-order regression equation showing good agreement between the predicted and the experimental data as the adjusted correlation coefficients were greater than 0.80. The multi-response optimized conditions have been set at the temperature of 480 °C, the activation time of 113 min, and the impregnation ratio of 3.34/1 (w/w). The activated carbon prepared in these conditions has a specific surface area of 896 m2/g with micro- and mesopore volumes of 34% and 66%, respectively. Water depollution capacity of this activated carbon evaluated by adsorption of MB and iodine was 206 mg/g and 927 mg/g, respectively.

This is a preview of subscription content, access via your institution.

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Rajoriya, S.; Bargole, S.; George, S.; Saharan, V.K.: Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents. J. Hazard. Mater. 344, 1109–1115 (2018). https://doi.org/10.1016/j.jhazmat.2017.12.005

    Article  Google Scholar 

  2. 2.

    Hachi, M.; Selatnia, C.A.; Cabana, H.: Valorization of the spent biomass of pleurotus mutilus immobilized as calcium alginate biobeads for methylene blue biosorption. Environ. Process. 3, 413–430 (2016). https://doi.org/10.1007/s40710-016-0157-z

    Article  Google Scholar 

  3. 3.

    Cuiping, B.; Wenqi, G.; Dexin, F.; Mo, X.; Qi, Z.; Shaohua, C.; Zhongxue, G.; Yanshui, Z.: Natural graphite tailings as heterogeneous Fenton catalyst for the decolorization of rhodamine B. Chem. Eng. J. 197, 306–313 (2012). https://doi.org/10.1016/j.cej.2012.04.108

    Article  Google Scholar 

  4. 4.

    Nasrullah, A.; Bhat, A.H.; Naeem, A.; Isa, M.H.; Danish, M.: High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int. J. Biol. Macrom. 107, 1792–1799 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.045

    Article  Google Scholar 

  5. 5.

    Freitas, T.K.F.S.; Oliveira, V.M.; de Souza, M.T.F.; Geraldino, H.C.L.; Almeida, V.C.; Fávaro, S.L.; Garcia, J.C.: Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Ind. Crop. Prod. 76, 538–544 (2015). https://doi.org/10.1016/j.indcrop.2015.06.027

    Article  Google Scholar 

  6. 6.

    Hassanzadeh, E.; Farhadian, M.; Razmjou, A.; Askari, N.: An efficient wastewater treatment approach for a real woolen textile industry using a chemical assisted NF membrane process. Environ. Nanotechnol. Monit. Manag. 8, 92–96 (2017). https://doi.org/10.1016/j.enmm.2017.06.001

    Article  Google Scholar 

  7. 7.

    Orts, F.; del Río, A.I.; Molina, J.; Bonastre, J.; Cases, F.: Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®. J. Electroanal. Chem. 808, 387–394 (2018). https://doi.org/10.1016/j.jelechem.2017.06.051

    Article  Google Scholar 

  8. 8.

    Duarte, F.; Morais, V.; Maldonado-Hódar, F.J.; Madeira, L.M.: Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst. Chem. Eng. J. 232, 34–41 (2013). https://doi.org/10.1016/j.cej.2013.07.061

    Article  Google Scholar 

  9. 9.

    Ye, S.; Yan, M.; Tan, X.; Liang, J.; Zeng, G.; Wu, H.; Song, B.; Zhou, C.; Yang, Y.; Wang, H.: Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl. Catal. B: Environ. 250, 78–88 (2019). https://doi.org/10.1016/j.apcatb.2019.03.004

    Article  Google Scholar 

  10. 10.

    Danish, M.; Ahmad, T.; Nadhari, W.N.A.W.; Ahmad, M.; Khanday, W.A.; Ziyang, L.; Pin, Z.: Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment. Appl. Water. Sci. 8, 1–11 (2018). https://doi.org/10.1007/s13201-018-0644-7

    Article  Google Scholar 

  11. 11.

    Leal, T.W.; Lourenço, L.A.; Scheibe, A.S.; de Souza, S.M.A.G.U.; de Souza, A.A.U.: Textile wastewater treatment using low-cost adsorbent aiming the water reuse in dyeing process. J. Environ. Chem. Eng. 6, 2705–2712 (2018). https://doi.org/10.1016/j.jece.2018.04.008

    Article  Google Scholar 

  12. 12.

    Peláez-Cid, A.A.; Herrera-González, A.M.; Salazar-Villanueva, M.; Bautista-Hernández, A.: Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. J. Environ. Manag. 181, 269–278 (2016). https://doi.org/10.1016/j.jenvman.2016.06.026

    Article  Google Scholar 

  13. 13.

    da Silva Lacerda, V.; López-Sotelo, J.B.; Correa-Guimarães, A.; Hernández-Navarro, S.; Sánchez-Báscones, M.; Navas-Gracia, L.M.; Martín-Ramos, P.; Martín-Gil, J.: Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J. Environ. Manag. 155, 67–76 (2015). https://doi.org/10.1016/j.jenvman.2015.03.007

    Article  Google Scholar 

  14. 14.

    Bansal, R.C.; Donnet, J.B.; Stoeckli, F.: Active Carbon. Marcel Dekker, New York (1988)

    Google Scholar 

  15. 15.

    Das, S.; Mishra, S.: Box-Behnken statistical design to optimize preparation of activated carbon from limonia acidissima shell with desirability approach. J. Environ. Chem. Eng. 5, 588–600 (2016). https://doi.org/10.1016/j.jece.2016.12.034

    Article  Google Scholar 

  16. 16.

    Sayğili, H.; Güzel, F.: High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: Process optimization, characterization and dyes adsorption. J. Clean. Prod. 113, 995–1004 (2016). https://doi.org/10.1016/j.jclepro.2015.12.055

    Article  Google Scholar 

  17. 17.

    Abdel-Ghani, N.T.; El-Chaghaby, G.A.; Elgammal, M.H.; Rawash, E.S.A.: Optimizing the preparation conditions of activated carbons from olive cake using KOH activation. New Carbon Mater. 31, 492–500 (2016). https://doi.org/10.1016/S1872-5805(16)60027-6

    Article  Google Scholar 

  18. 18.

    Def, T.; Traoré, S.; Aby, N.; Gnonhouri, P.; Yao, N.; Kobenan, K.; Konan, E.; Adiko, A.; Zakra, N.: Diversité et sélection participative de variétés locales productives de banane plantain de Côte d’Ivoire. J. Appl. Biosci. 114, 11324–11335 (2017). https://doi.org/10.4314/jab.v114i1.6

    Article  Google Scholar 

  19. 19.

    Sugumaran, P.; Susan, V.P.; Ravichandran, P.; Seshadri, S.: Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod. J. Sustain. Energ. Environ. 3, 125–132 (2012)

    Google Scholar 

  20. 20.

    Ahmad, A.A.; Hameed, B.H.: Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater. J. Hazard. Mater. 173, 487–493 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.111

    Article  Google Scholar 

  21. 21.

    Dizbay-Onat, M.; Vaidya, U.K.; Lungu, C.T.: Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics. Ind. Crop. Prod. 95, 583–590 (2016). https://doi.org/10.1016/j.indcrop.2016.11.016

    Article  Google Scholar 

  22. 22.

    Kan, Y.; Yue, Q.; Li, D.; Wu, Y.; Gao, B.: Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal. J. Taiwan Inst. Chem. Eng. 71, 494–500 (2017). https://doi.org/10.1016/j.jtice.2016.12.012

    Article  Google Scholar 

  23. 23.

    Huang, Y.P.; Hou, C.H.; Hsi, H.C.; Wu, J.W.: Optimization of highly microporous activated carbon preparation from Moso bamboo using central composite design approach. J. Taiwan Inst. Chem. Eng. 50, 266–275 (2015). https://doi.org/10.1016/j.jtice.2014.12.019

    Article  Google Scholar 

  24. 24.

    Yang, J.; Qiu, K.: Experimental design to optimize the preparation of activated carbons from herb residues by vacuum and traditional ZnCl2 chemical activation. Ind. Eng. Chem. Res. 50, 4057–4064 (2011). https://doi.org/10.1021/ie101531p

    Article  Google Scholar 

  25. 25.

    Senthilkumar, T.; Chattopadhyay, S.K.; Miranda, L.R.: Optimization of activated carbon preparation from pomegranate peel (Punica granatum Peel) using RSM. Chem. Eng. Commun. 204, 238–248 (2017). https://doi.org/10.1080/00986445.2016.1262358

    Article  Google Scholar 

  26. 26.

    Juang, R.S.; Tseng, R.L.; Wu, F.C.: Role of microporosity of activated carbons on their adsorption abilities for phenols and dyes. Adsorption. 7, 65–72 (2001). https://doi.org/10.1023/A:1011225001324

    Article  Google Scholar 

  27. 27.

    Ennaciri, K.; Baçaoui, A.; Sergent, M.; Yaacoubi, A.: Application of fractional factorial and Doehlert designs for optimizing the preparation of activated carbons from Argan shells. Chemometr. Intell. Lab. 139, 48–57 (2014). https://doi.org/10.1016/j.chemolab.2014.09.006

    Article  Google Scholar 

  28. 28.

    Tounsadi, H.; Khalidi, A.; Abdennouri, M.; Barka, N.: Activated carbon from Diplotaxis Harra biomass: optimization of preparation conditions and heavy metal removal. J. Taiwan Inst. Chem. Eng. 59, 348–358 (2016). https://doi.org/10.1016/j.jtice.2015.08.014

    Article  Google Scholar 

  29. 29.

    Lussier, M.G.; Shull, J.C.; Miller, D.J.: Activated carbon from cherry stones. Carbon 32, 1493–1498 (1994). https://doi.org/10.1016/0008-6223(94)90144-9

    Article  Google Scholar 

  30. 30.

    Warhurst, A.M.; McConnachie, G.L.; Pollard, S.J.T.: The production of activated carbon for water treatment in Malawi from the waste seed husks of Moringa oleifera. Water. Sci. Technol. 34, 177–184 (1996). https://doi.org/10.1016/S0273-1223(96)00836-0

    Article  Google Scholar 

  31. 31.

    Raposo, F.; Rubia, M.A.D.L.; Borja, R.: Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size. J. Hazard. Mater. 165, 291–299 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.106

    Article  Google Scholar 

  32. 32.

    Garba, Z.N.; Rahim, A.A.; Bello, B.Z.: Optimization of preparation conditions for activated carbon from Brachystegia eurycoma seed hulls: a new precursor using central composite design. J. Environ. Chem. Eng. 3, 2892–2899 (2015). https://doi.org/10.1016/j.jece.2015.10.017

    Article  Google Scholar 

  33. 33.

    Thuan, T.V.; Quynh, B.T.P.; Nguyen, T.D.; Ho, V.T.T.; Bach, L.G.: Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surf. Interfaces. 6, 209–217 (2017). https://doi.org/10.1016/j.surfin.2016.10.007

    Article  Google Scholar 

  34. 34.

    Torrades, F.; Saiz, S.; García-Hortal, J.A.: Using central composite experimental design to optimize the degradation of black liquor by Fenton reagent. Desalination 268, 97–102 (2011). https://doi.org/10.1016/j.desal.2010.10.003

    Article  Google Scholar 

  35. 35.

    Domínguez, J.R.; González, T.; Palo, P.; Cuerda-Correa, E.M.: Fenton + Fenton-like integrated process for carbamazepine degradation: optimizing the system. Ind. Eng. Chem. Res. 51, 2531–2538 (2012). https://doi.org/10.1021/ie201980p

    Article  Google Scholar 

  36. 36.

    Kaneko, K.; Ishii, C.: Superhigh surface area determination of microporous solids. Colloids Surf. 67, 203–212 (1992). https://doi.org/10.1016/0166-6622(92)80299-H

    Article  Google Scholar 

  37. 37.

    Gregg, S.J.; Sing, K.S.W.: Adsorption, Surface Area, and Porosity. Academic Press, London (1982)

    Google Scholar 

  38. 38.

    Jagiello, J.; Olivier, J.P.: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C. 113, 19382–19385 (2009). https://doi.org/10.1021/jp9082147

    Article  Google Scholar 

  39. 39.

    Seung Kim, Y.; Rae Park, C.: Titration Method for the Identification of Surface Functional Groups. Tsinghua University Press Limited (2016). https://doi.org/10.1016/b978-0-12-805256-3.00013-1

    Article  Google Scholar 

  40. 40.

    Brahmi, L.; Kaouah, F.; Boumaza, S.; Trari, M.: Response surface methodology for the optimization of acid dye adsorption onto activated carbon prepared from wild date stones. Appl. Water. Sci. 9, 1–13 (2019). https://doi.org/10.1007/s13201-019-1053-2

    Article  Google Scholar 

  41. 41.

    Rondina, D.J.G.; Ymbong, D.V.; Cadutdut, M.J.M.; Nalasa, J.R.S.; Paradero, J.B.; Mabayo, V.I.F.; Arazo, R.O.: Utilization of a novel activated carbon adsorbent from press mud of sugarcane industry for the optimized removal of methyl orange dye in aqueous solution. Appl. Water. Sci. 9, 1–12 (2019). https://doi.org/10.1007/s13201-019-1063-0

    Article  Google Scholar 

  42. 42.

    Unuabonah, E.I.; Adie, G.U.; Onah, L.O.; Adeyemi, O.G.: Multistage optimization of the adsorption of methylene blue dye onto defatted Carica papaya seeds. Chem. Eng. J. 155, 567–579 (2009). https://doi.org/10.1016/j.cej.2009.07.012

    Article  Google Scholar 

  43. 43.

    Sapkaite, I.; Barrado, E.; Fdz-Polanco, F.; Pérez-Elvira, S.I.: Optimization of a thermal hydrolysis process for sludge pre-treatment. J. Environ. Manag. 192, 25–30 (2017). https://doi.org/10.1016/j.jenvman.2017.01.043

    Article  Google Scholar 

  44. 44.

    Briton, B.G.H.; Duclaux, L.; Richardson, Y.; Yao, K.B.; Reinert, L.; Soneda, Y.: Optimization of total organic carbon removal of a real dyeing wastewater by heterogeneous Fenton using response surface methodology. Desal. Water. Treat. 136, 186–198 (2018). https://doi.org/10.5004/dwt.2018.22845

    Article  Google Scholar 

  45. 45.

    Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S.: Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem. Eng. J. 140, 32–42 (2008). https://doi.org/10.1016/j.cej.2007.08.032

    Article  Google Scholar 

  46. 46.

    Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.S.; Rouquerol, J.; Siemieniewska, T.: International Union of Pure Commission on Colloid and Surface Chemistry Including Catalysis, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985). https://doi.org/10.1351/pac198557040603

    Article  Google Scholar 

  47. 47.

    Jagtoyen, M.; Derbyshire, F.: Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36, 1085–1097 (1998). https://doi.org/10.1016/S0008-6223(98)00082-7

    Article  Google Scholar 

  48. 48.

    Zuim, D.R.; Carpiné, D.; Distler, G.A.R.; De Paula Scheer, A.; Igarashi-Mafra, L.; Mafra, M.R.: Adsorption of two coffee aromas from synthetic aqueous solution onto granular activated carbon derived from coconut husks. J. Food Eng. 104, 284–292 (2011). https://doi.org/10.1016/j.jfoodeng.2010.12.019

    Article  Google Scholar 

  49. 49.

    Mahmood, T.; Ali, R.; Naeem, A.; Hamayun, M.; Aslam, M.: Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology. Process. Saf. Environ. Prot. 109, 548–563 (2017). https://doi.org/10.1016/j.psep.2017.04.024

    Article  Google Scholar 

  50. 50.

    Silva, T.L.; Cazetta, A.L.; Souza, P.S.C.; Zhang, T.; Asefa, T.; Almeida, V.C.: Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. J. Clean. Prod. 171, 482–490 (2018). https://doi.org/10.1016/j.jclepro.2017.10.034

    Article  Google Scholar 

  51. 51.

    Konan, A.T.S.; Richard, R.; Andriantsiferana, C.; Yao, K.B.; Manero, M.H.: Low-cost activated carbon for adsorption and heterogeneous ozonation of phenolic wastewater. Desal. Water. Treat. 163, 336–346 (2019). https://doi.org/10.5004/dwt.2019.24479

    Article  Google Scholar 

  52. 52.

    Gueye, M.; Richardson, Y.; Kafack, F.T.; Blin, J.: High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. J. Environ. Chem. Eng. 2, 273–281 (2014). https://doi.org/10.1016/j.jece.2013.12.014

    Article  Google Scholar 

  53. 53.

    Charola, S.; Patel, H.; Chandna, S.; Maiti, S.: Optimization to prepare porous carbon from mustard husk using response surface methodology adopted with central composite design. J. Clean. Prod. 223, 969–979 (2019). https://doi.org/10.1016/j.jclepro.2019.03.169

    Article  Google Scholar 

  54. 54.

    Üner, O.; Geçgel, Ü.; Kolancilar, H.; Bayrak, Y.: Adsorptive removal of rhodamine B with activated carbon obtained from okra wastes. Chem. Eng. Commun. 204, 772–783 (2017). https://doi.org/10.1080/00986445.2017.1319361

    Article  Google Scholar 

  55. 55.

    Lu, P.J.; Lin, H.C.; Te Yu, W.; Chern, J.M.: Chemical regeneration of activated carbon used for dye adsorption. J. Taiwan Inst. Chem. Eng. 42, 305–311 (2011). https://doi.org/10.1016/j.jtice.2010.06.001

    Article  Google Scholar 

Download references


The authors thank the French Embassy in Côte d'Ivoire via Campus-France and the “Agence Universitaire de la Francophonie” for awarding the Ph.D scholarship to Bi Gouessé Henri Briton.


No funding was received for this work.

Author information



Corresponding author

Correspondence to Bi Gouessé Henri Briton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors certify that article is original work that has not been published elsewhere and approve the submission to Arabian journal for Science and Engineering.

Informed consent

All authors have endorsed the publication of this research.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Briton, B.G.H., Yao, B.K., Richardson, Y. et al. Optimization by Using Response Surface Methodology of the Preparation from Plantain Spike of a Micro-/Mesoporous Activated Carbon Designed for Removal of Dyes in Aqueous Solution. Arab J Sci Eng 45, 7231–7245 (2020). https://doi.org/10.1007/s13369-020-04390-0

Download citation


  • Plantain spike
  • Optimization
  • Activated carbon
  • Porosity
  • Iodine number
  • Methylene blue index