Skip to main content

Advertisement

Log in

Mechanical Characterization of Concrete Reinforced with Different Types of Carbon Nanotubes

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The main purpose of this study is to characterize the mechanical properties of concrete reinforced with carbon nanotubes (CNT). For this, an extensive experimental program was carried out involving the production and characterization of concrete mixes with five types of CNT, in terms of flexural, splitting tensile and compressive strength, ultrasonic pulse velocity, elastic modulus and fracture toughness. The dispersion ability of CNT in a wide range of pH aqueous suspensions was evaluated prior to their incorporation in concrete. It was found that 0.05–0.1% of CNT were effective to improve all tested properties, increasing the compressive, flexural and splitting tensile strength, as well as the fracture energy and elastic modulus up to 23%, 18%, 27%, 42% and 15%, respectively. The CNT showed great potential to improve the crack resistance and the fracture toughness of concrete, especially in the pre-peak performance of concrete. In relative to other types of CNT, concrete containing higher dosages of lower aspect ratio CNT had the highest improvement of mechanical strength. This is explained by the lower structural damage and higher dispersion capacity of this type of CNT in high pH environments. Nevertheless, higher aspect ratio CNT showed better contribution for the fracture energy, due to their more efficient bridging effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Avouris, P.; Martel, R.; Derycke, V.; Appenzeller, J.: Carbon nanotube transistors and logic circuits. Phys. B 323, 6–14 (2002)

    Article  Google Scholar 

  2. Yu, M.-F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  3. Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S.L.; Schatz, G.C.; Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3, 626–631 (2008)

    Article  Google Scholar 

  4. Salvetat, J.; Bonard, J.; Thomson, N.; Kulik, A.; Forro, L.; Benoit, W.; Zuppiroli, L.: Mechanical properties of carbon nanotubes. J. Appl. Phys A. 69, 255–260 (1999)

    Article  Google Scholar 

  5. Hawreen, A.; Bogas, J.A.: Creep and shrinkage of concrete reinforced with different types of carbon nanotubes. Constr. Build. Mater. 198, 70–81 (2019)

    Article  Google Scholar 

  6. Hawreen, A.; Bogas, A.; Guedes, M.: Mechanical behaviour and transport properties of cementitious composites reinforced with carbon nanotubes. J. Mater. Civ. Eng. 30, 04018257 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002470

    Article  Google Scholar 

  7. Hawreen, A.; Bogas, J.; Guedes, M.; Pereira, M.F.C.: Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites. Mag. Concr. Res. 71, 408–423 (2019)

    Article  Google Scholar 

  8. Hawreen, A.; Bogas, J.A.; Dias, A.P.S.: On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Constr. Build. Mater. 168, 459–470 (2018)

    Article  Google Scholar 

  9. Hawreen, A.; Bogas, J.A.: Influence of carbon nanotubes on steel-concrete bond strength. Mater. Struct. (2018). https://doi.org/10.1617/s11527-018-1279-8

    Google Scholar 

  10. Carriço, A.; Bogas, J.A.; Hawreen, A.; Guedes, M.: Durability of multi-walled carbon nanotube reinforced concrete. Constr. Build. Mater. 164, 121–133 (2018)

    Article  Google Scholar 

  11. Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V.: Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20, 65–73 (2008)

    Article  Google Scholar 

  12. Kumar, S.; Kolay, P.; Malla, S.; Mishra, S.: Effect of multiwalled carbon nanotubes on mechanical strength of cement paste. J. Mater. Civ. Eng. 24, 84–91 (2012)

    Article  Google Scholar 

  13. Musso, S.; Tulliani, J.; Ferro, G.; Tagliaferro, A.: Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 69, 1985–1990 (2009)

    Article  Google Scholar 

  14. Nochaiya, T.; Chaipanich, A.: Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 257, 1941–1945 (2011)

    Article  Google Scholar 

  15. Li, G.Y.; Wang, P.M.; Zhao, X.: Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43, 1239–1245 (2005)

    Article  Google Scholar 

  16. Stynoski, P.; Mondal, P.; Marsh, C.: Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cem. Concr. Compos. 55, 232–240 (2015)

    Article  Google Scholar 

  17. Makar, J., Margeson, J., Luh, J.: Carbon nanotube/cement composites-early results and potential applications. In: 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, pp. 1–10 (2005)

  18. Makar, J.; Chan, G.: Growth of cement hydration products on single-walled carbon nanotubes. J. Am. Ceram. Soc. 92, 1303–1310 (2009)

    Article  Google Scholar 

  19. Bogas, J.A.; Hawreen, A.; Olhero, S.; Ferro, A.C.; Guedes, M.: Selection of dispersants for stabilization of unfunctionalized carbon nanotubes in high pH aqueous suspensions: application to cementitious matrices. Appl. Surf. Sci. 463, 169–181 (2019)

    Article  Google Scholar 

  20. BSEN197-1. Cement. Composition, Specifications and Conformity Criteria for Common Cements in BSEN (British Standard European Norm). London, UK (2011)

  21. BSEN1097-6. Tests for Mechanical and Physical Properties of Aggregates. Determination of Particle Density and Water Absorption, in BSEN (British Standard European Norm). London, UK (2013)

  22. BSEN1097-3. Tests for Mechanical and Physical Properties of Aggregates. Determination of Loose Bulk Density and Voids, in BSEN (British Standard European Norm). London, UK (1998)

  23. BSEN933-4. Tests for Geometrical Properties of Aggregates. Determination of Particle Shape. Shape Index, in BSEN (British Standard European Norm). London, UK (2008)

  24. BSEN1097-2. Tests for Mechanical and Physical Properties of Aggregates. Methods for the Determination of Resistance to Fragmentation in BSEN (British Standard European Norm). London, UK (2010)

  25. Guedes, M., Hawreen, A., Bogas, J., Olhero, S.: Experimental procedure for evaluation of CNT dispersion in high pH media characteristic of cementitious matrixes. In 1º Congress of Tests and Experimentation in Civil Engineering. 4/6/2016. Instituto Superior Técnico, Lisbon, Portugal

  26. BSEN206-1. Concrete. Specification, Performance, Production and Conformity, in BSEN (British Standard European Norm). London, UK (2000)

  27. BSEN12390-3. Testing Hardened Concrete. Compressive Strength of Test Specimens, in BSEN (British Standard European Norm). London, UK (2009)

  28. BSEN12390-6. Testing Hardened Concrete. Tensile Splitting Strength of Test Specimens, in BSEN (British Standard European Norm). London, UK (2009)

  29. BSEN12390-5. Testing Hardened Concrete. Flexural Strength of Test Specimens, in BSEN (British Standard European Norm). London, UK (2009)

  30. BSEN12504-4. Testing Concrete. Determination of Ultrasonic Pulse Velocity, in BSEN (British Standard European Norm). London, UK (2004)

  31. LNECE397. Concretes: determination of the modulus of elasticity under compression. In: LNEC (Laboratório Nacional de Engenharia Civil). Lisbon, Portugal (1993)

  32. ASTMC1609/C1609M. Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading) (2012)

  33. RILEM-TCS: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct 18, 285–290 (1985)

    Article  Google Scholar 

  34. Shah, S.: Determination of fracture parameters (K sIc and CTODc) of plain concrete using three-point bend tests. Mater. Struct. 23, 457–460 (1990)

    Article  Google Scholar 

  35. Lee, J.; Kim, M.; Hong, C.; Shim, S.: Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents. Meas. Sci. Technol. 18, 3707–3712 (2007)

    Article  Google Scholar 

  36. Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    Article  Google Scholar 

  37. Cançado, L.G.; Pimenta, M.A.; Saito, R.; Jorio, A.; Ladeira, L.O.; Grueneis, A.; Souza-Filho, A.G.; Dresselhaus, G.; Dresselhaus, M.S.: Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B. (2002). https://doi.org/10.1103/PhysRevB.66.035415

    Google Scholar 

  38. Kowald, T., Trettin, R.: Improvement of cementitious binders by multi-walled carbon nanotubes. In: Bittnar, Z., et al. (eds.), Nanotechnology in Construction 3: Proceedings of the NICOM3, pp. 261–266. Springer, Berlin (2009)

  39. Chen, S.J.; Collins, F.G.; Macleod, A.J.N.; Pan, Z.; Duan, W.H.; Wang, C.M.: Carbon nanotube-cement composites: a retrospect. IES J Part A Civ Struct Eng 4, 254–265 (2011)

    Article  Google Scholar 

  40. Neville, A.: Properties of Concrete. Pitman Publishing Comp. Ltd, New York (1995)

    Google Scholar 

  41. Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.M.; Duan, W.H.: Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 85, 212–220 (2015)

    Article  Google Scholar 

  42. Bogas, J.: Characterization of structural concrete with light aggregates of expanded clay. In: Departamento de Engenharia Civil, Arquitectura e Georrecursos. Ph.D. Thesis. Instituto Superior Técnico (2011) (in Portuguese)

  43. BSEN1992-2. Eurocode 2. Design of Concrete Structures. Concrete Bridges. Design and Detailing Rules, in BSEN (British Standard European Norm). London, UK (2005)

  44. Pundit, Pundit Manual for Use with the Portable Ultrasonic Non-destructive Digital Indicating Tester. C.N.S. Electronics Ltd., London. https://www.sciencedirect.com/science/article/pii/S0041624X12002739#bi0005 (1991)

  45. Mehta, P.; Monteiro, P.: Concrete: Microstructure, Properties and Materials. McGraw-Hill Professional Publishing, New York (2006)

    Google Scholar 

  46. Manzur, T.; Yazdani, N.: Optimum mix ratio for carbon nanotubes in cement mortar. KSCE J. Civil Eng. 19, 1405–1412 (2014)

    Article  Google Scholar 

  47. Hamzaoui, R.; Guessasma, S.; Mecheri, B.; Eshtiaghi, A.M.; Bennabi, A.: Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes. Mater. Des. 56, 60–68 (2014)

    Article  Google Scholar 

  48. Kim, H.K.; Nam, I.W.; Lee, H.K.: Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos. Struct. 107, 60–69 (2014)

    Article  Google Scholar 

  49. BSEN1992-1-1. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings, in BSEN (British Standard European Norm). London, UK (2004)

  50. fib10. Bond of Reinforcement in Concrete. Bulletin 10, State-of-Art-Report. Lausanne: fib—CEB-FIP—Fédération internationale du béton, p. 434 (2000)

  51. Canovas, M.F.: Colegio de Ingenieros de caminos, canales y puertos: Hormigon. Espanha, Madrid (2004)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank research group CERIS for funding the study, as well as the companies BASF and SECIL for supplying the materials used in the experiments. The authors are grateful for the support of Centre for Imaging and Structure of Materials at Aveiro Institute of Materials-University of Aveiro and Department of Physics at Instituto Superior Técnico-University of Lisbon for providing equipment of Zeta potential and Raman spectroscopy tests, respectively. The first author also would like to thank Fundação Calouste Gulbenkian (Portugal) for the financial support through Scholarship No. 125745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hawreen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawreen, A., Bogas, J.A. & Kurda, R. Mechanical Characterization of Concrete Reinforced with Different Types of Carbon Nanotubes. Arab J Sci Eng 44, 8361–8376 (2019). https://doi.org/10.1007/s13369-019-04096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04096-y

Keywords

Navigation