Skip to main content
Log in

Physico-Chemical, Mechanical and Thermal Behaviour of Agro-waste RHA-Reinforced Green Emerging Composite Material

  • Technical Note - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ceramic particles such as SiC, \(\hbox {Al}_{{2}}\hbox {O}_{{3}}\) and \(\hbox {B}_{{4}}\)C are most commonly used as reinforcement particles while developing composite materials. The industries producing these particles emit huge amount of greenhouse gases such as \(\hbox {N}_{{2}}\hbox {O}_{3, }\hbox {CH}_{4 }\) and \(\hbox {CO}_{2}\). Emission of these gases poses serious threats to the neighbouring environment. Adding to environmental concerns, the costs of production for ceramic particles are very high. The present study has used rice husk ash (RHA) as a partial replacement of ceramic particles. Microstructural examinations have shown evidence of RHA particles in the aluminium-based metal matrix composite samples. It was also revealed that tensile strength and hardness increased about 48% and 48.33% with respect to base metal (AA6063), after mixing the carbonized RHA into matrix material. Presence of \(\hbox {SiO}_{{2}}\), CaO, \(\hbox {Fe}_{{2}}\hbox {O}_{3 }\) compositions in carbonized RHA improves the tensile strength and hardness of composites. Porosity of Al/7.5 wt% carbonized RHA metal matrix composite was found to be 6.33%, which is acceptable. Maximum specific strength and minimum corrosion loss were found to be 65.57 kN m/Kg (for 8.75 wt% of carbonized reinforced RHA) and 0.17 mg (for 5 wt% of carbonized reinforced RHA), respectively. Density and cost of RHA-reinforced composite continuously decrease with the increase in percentage of reinforcement. Minimum thermal expansion (50.98 mm\(^{3}\)) was observed for 6.25 wt% of carbonized RHA-reinforced composite. It was also observed from the analysis that carbonized RHA-reinforced composite provides better result as compared to uncarbonized RHA-reinforced composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Kremer, G.E.; Haapala, K.; Murat, A.; Chinnam, R.B.; Kim, K.; Monplaisir, L.; Lei, T.: Directions for instilling economic and environmental sustainability across product supply chains. J. Clean. Prod. 112, 2066–2078 (2016)

    Article  Google Scholar 

  2. Pandey, R.U.; Surjan, A.; Kapshe, M.: Exploring linkages between sustainable consumption and prevailing green practices in reuse and recycling of household waste: case of Bhopal city in India. J. Clean. Prod. 173, 49–59 (2018)

    Article  Google Scholar 

  3. Kohtala, C.; Hyysalo, S.: Anticipated environmental sustainability of personal fabrication. J. Clean. Prod. 99, 333–344 (2015)

    Article  Google Scholar 

  4. Lunge, S.; Thakre, D.; Kamble, S.; Labhsetwar, N.; Rayalu, S.: Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste. J. Hazard. Mater. 237, 161–169 (2012)

    Article  Google Scholar 

  5. Yew, M.C.; Ramli Sulong, N.H.; Yew, M.K.; Amalina, M.A.; Johan, M.R.: The formulation and study of the thermal stability and mechanical properties of an acrylic coating using chicken eggshell as a novel bio-filler. Prog. Organ. Coat. 76, 1549–1555 (2013)

    Article  Google Scholar 

  6. Tekeli, S.: The flexural strength, fracture toughness, hardness and densification behaviour of various amount of \(\text{ Al }_{{2}}\text{ O }_{{3}}\)-doped 8YSCZ/\(\text{ Al }_{{2}}\text{ O }_{{3}}\) composites used as an electrolyte for solid oxide fuel cell. Mater. Des. 27, 230–235 (2006)

    Article  Google Scholar 

  7. Zhang, W.; Gao, L.; Lia, J.; Yanga, B.; Yin, Y.: TiAl/\(\text{ B }_{{4}}\)C marine material-fabrication. Mech. Corros. Prop. Ceram. Int. 37, 783–789 (2011)

    Google Scholar 

  8. Shanmughasundaram, P.; Subramanian, R.: Influence of graphite and machining parameters on the surface roughness of Al-fly ash/graphite hybrid composite: a Taguchi approach. J. Mech. Sci. Technol. 27, 2445–2455 (2013)

    Article  Google Scholar 

  9. Aziz, I.; Qi, Z.; Min, X.: Corrosion inhibition of SiCp/5A06 aluminum metal matrix composite by cerium conversion treatment. Chin. J. Aeronaut. 22, 670–676 (2009)

    Article  Google Scholar 

  10. Jing, W.; Peijie, L.; Zhongyuexian, M.: Microstructural evolution caused by electromagnetic stirring in superheated alsi7mg alloys. J. Mater. Process. Technol. 1, 1652–1659 (2010)

    Google Scholar 

  11. Abedi, K.; Emamy, M.: The effect of Fe, Mn and Sr on the microstructure and tensile properties of A356–10% sic composite. Mater. Sci. Eng. A 16–17, 3733–3740 (2010)

    Article  Google Scholar 

  12. Khan, R.; Jabbar, A.; Ahmad, I.; Khan, W.; Khan, A.N.; Mirza, J.: Reduction in environmental problems using rice-husk ash in concrete. Constr. Build. Mater. 30, 360–365 (2012)

    Article  Google Scholar 

  13. Rattanasak, U.; Chindaprasirt, P.; Suwanvitaya, P.: Development of high volume rice husk ash alumino silicate composites. Int. J. Miner. Metall. Mater. 17, 654–659 (2010)

    Article  Google Scholar 

  14. Dinaharan, I.; Kalaiselvan, K.; Murugan, N.: Influence of rice husk ash particles on microstructure and tensile behavior of AA6061 aluminum matrix composites produced using friction stir processing. Compos. Commun. 3, 42–46 (2017)

    Article  Google Scholar 

  15. Dinaharan, I.; Kalaiselvan, K.; Akinlabi, E.T.; Davim, J.P.: Microstructure and wear characterization of rice husk ash reinforced copper matrix composites prepared using friction stir processing. J. Alloys Compd. 718, 150–160 (2017)

    Article  Google Scholar 

  16. Kingsly Gladston, J.A.; Dinaharan, I.; Mohamed Sheriff, N.; Raja Selvam, J.D.: Dry sliding wear behavior of AA6061 aluminum alloy composites reinforced rice husk ash particulates produced using compocasting. J. Asian Ceram. Soc. 5, 127–135 (2017)

    Article  Google Scholar 

  17. Alaneme, K.K.; Ekperusi, J.; Oke, S.: Corrosion behaviour of thermal cycled aluminium hybrid composites reinforced with rice husk ash and silicon carbide. J. King Saud Univ. Eng. Sci. 30, 391–397 (2018)

    Google Scholar 

  18. Verma, N.; Vettivel, S.C.: Characterization and experimental analysis of boron carbide and rice husk ash reinforced AA7075 aluminium alloy hybrid composite. J. Alloys Compd. 741, 981–998 (2018)

    Article  Google Scholar 

  19. Alaneme, K.K.; Oladiti, Sanusi K.: Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite. Eng. Sci. Technol. Int. J. 18, 416–422 (2015)

    Article  Google Scholar 

  20. Kingsly Gladston, J.A.; Mohamedsheriff, N.; Dinaharan, I.; Davidraja Selvam, J.: Production and characterization of rich husk ash particulate reinforced AA6061 aluminum alloy composites by compocasting. Trans. Nonferrous Met. Soc. China 25, 683–691 (2015)

    Article  Google Scholar 

  21. Deshmukh, P.Y.; Peshwe, D.R.; Bhatt, J.; Pathak, S.U.: Synthesis and characterization of Al–Mg–\(\text{ SiO }_{{2}}\) particulate composite using amorphous \(\text{ SiO }_{{2}}\) from rice husk ash. Trans. Indian Inst. Met. 64, 575–581 (2011)

    Article  Google Scholar 

  22. Saravanan, S.D.; Senthilkumar, M.: Prediction of tribological behaviour of rice husk ash reinforced aluminum alloy matrix composites using artificial neural network. Russ. J. Nonferrous Met. 56, 97–106 (2015)

    Article  Google Scholar 

  23. Vinod, B.; Ramanathan, S.; Anandajothi, M.: Effect of Organic and Inorganic Reinforcement on Tribological Behaviour of Aluminium A356 Matrix Hybrid Composite. Journal of Bio- and Tribo-Corrosion. 45, (2018). https://doi.org/10.1007/s40735-018-0157-9

  24. Dwivedi, S.P.; Sharma, S.; Mishra, R.K.: Synthesis and mechanical behaviour of green metal matrix composites using waste eggshells as reinforcement material. Green Process. Synth. 5, 275–282 (2016)

    Google Scholar 

  25. Dwivedi, S.P.; Sharma, S.; Mishra, R.K.: Characterization of waste eggshells and \(\text{ CaCO }_{{3}}\) reinforced AA2014 green metal matrix composites: a green approach in the synthesis of composites. Int. J. Precis. Eng. Manuf. 17, 1383–1393 (2016)

    Article  Google Scholar 

  26. Dwivedi, S.P.; Sharma, S.; Mishra, R.K.: Mechanical and metallurgical characterizations of AA2014/eggshells waste particulate metal matrix composite. Int. J. Precis. Eng. Manuf. Green Technol. 3, 281–288 (2016)

    Article  Google Scholar 

  27. Dwivedi, S.P.; Sharma, S.; Mishra, R.K.: A comparative study of waste eggshells, \(\text{ CaCO }_{{3}}\), and SiC-reinforced AA2014 green metal matrix composites. J. Compos. Mater. 51, 2407–2421 (2017)

    Article  Google Scholar 

  28. Dwivedi, S.P.; Sharma, S.; Mishra, R.K.: Effects of waste eggshells and SiC addition in the synthesis of aluminium hybrid green metal matrix composite. Green Process. Synth. 6, 113–123 (2017)

    Google Scholar 

  29. Sharma, S.; Dwivedi, S.P.: Effects of waste eggshells and SiC addition on specific strength and thermal expansion of hybrid green metal matrix composite. J. Hazard. Mater. 333, 1–9 (2017)

    Article  Google Scholar 

  30. Dwivedi, S.P.; Sharma, S.; Mishra, R.K.: Tribological behaviour of a newly developed AA2014/waste eggshells/SiC hybrid green metal matrix composite at optimum parameters. Green Process. Synth. (2017). https://doi.org/10.1515/gps-2016-0177

    Google Scholar 

  31. Dwivedi, S.P.; Sharma, S.; Mishra, R.K.: Influence of precipitation hardening parameters on the microstructure and mechanical properties of extruded AA2014/eggshells green composites. J. Compos. Mater. (2017). https://doi.org/10.1177/0021998317701558

    Google Scholar 

  32. Mohanavel, V.; Suresh Kumar, S.; Sathish, T.; Anand, K.T.: Effect of \(\text{ ZrB }_{{2}}\) content on mechanical and microstructural characterization of AA6063 aluminum matrix composites. Mater. Today Proc. 5, 13601–13605 (2018)

    Article  Google Scholar 

  33. Khan, R.; Jabbar, A.; Ahmad, I.; Khan, W.; Khan, A.N.; Mirza, J.: Reduction in environmental problems using rice-husk ash in concrete. Constr. Build. Mater. 30, 360–365 (2012)

    Article  Google Scholar 

  34. Dwivedi, S.P.; Srivastava, A.; Kumar, A.; Nandana, B.: Microstructure and mechanical behaviour of RHA and \(\text{ B }_{{4}}\)C reinforced aluminium alloy hybrid metal matrix composite. Indian J. Eng. Mater. Sci. 24, 133–140 (2017)

    Google Scholar 

  35. Narasaraju, G.; Linga Raju, D.: Characterization of hybrid rice husk and fly ash-reinforced aluminium alloy (AlSi10Mg) composites. Mater. Today Proc. 2, 3056–3064 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Prakash Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, S.P., Mishra, V.R. Physico-Chemical, Mechanical and Thermal Behaviour of Agro-waste RHA-Reinforced Green Emerging Composite Material. Arab J Sci Eng 44, 8129–8142 (2019). https://doi.org/10.1007/s13369-019-03784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03784-z

Keywords

Navigation