Skip to main content

Advertisement

Log in

Synthesis and Application of Cu-X zeolite for Removal of Antibiotic from Aqueous Solution: Process Optimization Using Response Surface Methodology

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

13X zeolite was synthesized for removal of tetracycline from aqueous solution. To improve the removal efficiency, FAU zeolite was exposed to ion exchange process with \(\hbox {Cu}^{+2}\). The experiments were designed by the Design-Expert 7.0.0 software. The effect of experimental parameters including initial tetracycline (TC) concentration (50, 156.5, 525, 893.5, 1000 ppm) \(\hbox {Cu}^{+2}\) dosages (0, 0.3, 1.3, 2.2, 3 g/g) solution pH (2, 3, 6.5, 10, 11) and contact time (20, 34.6, 85, 135.4 min) was evaluated on TC removal efficiency. For minimizing the number of experiments for a complete evaluation, response surface methodology and central composite design were applied by means of Design-Expert 7.0.0 software. Results revealed that FAU zeolite adsorbent was effective in removal of tetracycline, where the removal efficiency was 85%. In fact, by increasing initial TC concentration from 156.5 to 890 mg/L, the removal efficiency was increased, while further increase in initial TC concentration over 890 mg/L did not cause a significant enhancement in its removal efficiency. Amount of exchanged Cu to 1.75 g/g had a positive effect on the removal efficiency but in over 1.75 g/g dosages, the removal efficiency showed a decreasing trend. The Design-Expert 7.0.0 software reported that the optimal operating conditions are TC concentration—810.5 ppm, \(\hbox {Cu}^{+2}\) dosages—0.6 g/g, solution pH—5.3, and contact time—113.6 min. The adsorption isotherms were fitted by Sips and Freundlich and Redlich–Peterson models. Finally, the adsorption kinetics were also studied by pseudo-second-order equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chea, V.; Paolucci-Jeanjean, D.; Belleville, M.P.; Sanchez, J.: Optimization and characterization of an enzymatic membrane for the degradation of phenolic compounds. Catal. Today 193, 49–56 (2012)

    Article  Google Scholar 

  2. Alsager, O.A.; Alnajrani, M.N.; Abuelizz, H.A.; Aldaghmani, I.A.: Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity. Ecotoxicol. Environ. Saf. 158, 114–122 (2018)

    Article  Google Scholar 

  3. Feng, L.; Casas, M.E.; Ottosen, L.D.M.; Møller, H.B.; Bester, K.: Removal of antibiotics during the anaerobic digestion of pig manure. Sci. Tot. Environ. 603–604, 219–225 (2017)

    Article  Google Scholar 

  4. Ali, Imran; Aboul-Enein, Hassan Y.: Instrumental Methods in Metal Ions Speciation: Chromatography, Capillary Electrophoresis and Electrochemistry. Taylor & Francis Ltd., New York (2006)

    Book  Google Scholar 

  5. Ali, Imran; Aboul-Enein, Hassan Y.; Gupta, Vinod K.; Chromatography, Nano; Electrophoresis, Capillary: Pharmaceutical and Environmental Analyses. Wiley, Hoboken (2009)

    Google Scholar 

  6. Basheer, Al Arsh: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018)

    Article  Google Scholar 

  7. Gupta, V.K.; Ali, I.; Dekker, M.: Encyclopedia of Surface and Colloid Science, pp. 136–166. Marcel Dekker, New York (2002)

    Google Scholar 

  8. Baquero, F.; Martínez, J.-L.; Cantón, R.: Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotech. 19, 260–265 (2008)

    Article  Google Scholar 

  9. Liu, F.; Ying, G.-G.; Tao, R.; Zhao, J.-L.; Yang, J.-F.; Zhao, L.-F.: Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut. 157, 1636–1642 (2009)

    Article  Google Scholar 

  10. Wei-ming, L.; Yan-yu, B.; Qi-xing, Z.: Degradation pathways and main degradation products of tetracycline antibiotics: research progress. Ying. Shengtai Xu. 23, 2300–2308 (2012)

    Google Scholar 

  11. Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D.: Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601–3610 (2008)

    Article  Google Scholar 

  12. Ali, Imran; Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Protocol 1, 2661–2667 (2006)

    Article  Google Scholar 

  13. Ali, Imran; Hassan, Y.; Aboul-Enein, : Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48, 275–278 (2002)

    Article  Google Scholar 

  14. Ali, Imran; Gupta, Vinod K.; Khan, Tabrez A.; Asim, Mohd: removal of arsenate from aqueous solution by electro-coagulation method using Al-Fe electrodes. Int. J. Electrochem. Sci. 7, 1898–1907 (2012)

    Google Scholar 

  15. Meher, Alok Kumar; Das, Sera; Rayalu, Sadhana; Bansival, Amit: Enhanced arsenic removal from drinking water by iron-enriched aluminosilicate adsorbent prepared from fly ash. Environ. Sci. Pollut. Res. 21, 3218–3229 (2014)

    Article  Google Scholar 

  16. Ali, Imran; Khan, Tabrez A.; Asim, Mohd: Removal of arsenate from groundwater by electrocoagulation method. Environ. Sci. Pollut. Res. 19, 1668–1676 (2012)

    Article  Google Scholar 

  17. Ali, Imran; AL-Othman, Zeid A.; Alwarthan, Abdulrahman: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016)

    Article  Google Scholar 

  18. Ali, Imran; AL-Othman, Zeid A.; Sanagi, Mohd Marsin: Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015)

    Article  Google Scholar 

  19. Alharbi, Omar M.L.; Basheer, Al Arsh; Khattab, Rafat A.; Ali, Imran: Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 263, 442–453 (2018)

    Article  Google Scholar 

  20. Ali, Imran; Alharbi, Omar M.L.; Alothman, Zeid A.; Badjah, Ahmad Yacine; Basheer, Al Arsh: Artificial neural network modelling of amido black dye sorption on iron composite nano material: kinetics and thermodynamics studies. J. Mol. Liq. 250, 1–8 (2018)

    Article  Google Scholar 

  21. Burakova, Elena A.; Dyachkova, Tatyana P.; Rukhov, Artem V.; Tugolukov, Evgeny N.; Galunin, Evgeny V.; Tkachev, Alexey G.; ArshBasheer, Al; Ali, Imran: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018)

    Article  Google Scholar 

  22. Deblonde, T.; Cossu-Leguille, C.; Hartemann, P.: Emerging pollutants in wastewater: a review of the literature. Int. J. Hyg. Environ. Health 214, 442–448 (2011)

    Article  Google Scholar 

  23. Heberer, T.: Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 131, 5–17 (2002)

    Article  Google Scholar 

  24. Kümmerer, K.: Antibiotics in the aquatic environment—a review—Part I. Chemosphere 75, 417–434 (2009)

    Article  Google Scholar 

  25. Ali, Imran: New generation adsorbents for water treatment. Chem. Revs. (ACS) 112, 5073–5091 (2012)

    Article  Google Scholar 

  26. Ali, Imran; khan, Tabrez A.; Asim, Mohd: Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Sepn. Purfn. Rev. 40, 25–42 (2011)

    Article  Google Scholar 

  27. Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Supra molecular mechanism of the removal of 17-\(\beta \)-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq. 441, 123–129 (2017)

    Article  Google Scholar 

  28. Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: Kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017)

    Article  Google Scholar 

  29. Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016)

    Article  Google Scholar 

  30. Dehghani, Mohammad Hadi; Sanaei, Daryoush; Ali, Imran; Bhatnagar, Amit: Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671–679 (2016)

    Article  Google Scholar 

  31. Ali, Imran; Kumar, Chakresh: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84, 947–964 (2004)

    Article  Google Scholar 

  32. Fayaz, Mufida; Bhat, Musadiq H.; Kumar, Amit; Jain, Ashok K.: Comparative studies on different solvents used for the extraction of phytochemicals from the plant parts of Arnebia benthamii. (Wall Ex. G. Don) Johnston. J. Chem. Pharm. Res. 3, 220–224 (2017)

    Google Scholar 

  33. Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Toxicol. 13, 733–742 (2016)

    Article  Google Scholar 

  34. Ali, Imran; Althman, Zeid A.; Alwarthan, Abdulrahman: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desal. Water Treat. 57, 10409–10421 (2016)

    Article  Google Scholar 

  35. Ali, Imran; Althman, zeid A.; Alharbi, Omar M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J. Mol. Liq. 218, 465–472 (2016)

    Article  Google Scholar 

  36. Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 221, 1168–1174 (2016)

    Article  Google Scholar 

  37. Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J. Mol. Liq. 219, 858–864 (2016)

    Article  Google Scholar 

  38. Ali, Imran; Asim, Mohd; Khan, T.A.: Arsenite removal from water by electro-coagulation on zinc-zinc and copper–copper electrodes. Int. J. Environ. Sci. Technol. 10, 377–384 (2013)

    Article  Google Scholar 

  39. Lv, J.-M.; Ma, Y.-L.; Chang, X.; Fan, S.-B.: Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X. Chem. Eng. J. 273, 247–253 (2015)

    Article  Google Scholar 

  40. Ma, Y.; Yan, C.; Alshameri, A.; Qiu, X.; Zhou, C.; li, D.: Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Adv. Powder Technol. 25, 495–499 (2014)

    Article  Google Scholar 

  41. Scherzer, J.: Octane-enhancing, zeolitic FCC catalysts: scientific and technical aspects. Catal. Rev. 31, 215–354 (1989)

    Article  Google Scholar 

  42. Zhang, Z.Y.; Shi, T.B.; Jia, C.Z.; Ji, W.J.; Chen, Y.; He, M.Y.: Adsorptive removal of aromatic organosulfur compounds over the modified Na–Y zeolites. Appl. Catal. B: Environ. 82, 1–10 (2008)

    Article  Google Scholar 

  43. Fakhri, A.; Adami, S.: Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles. J. Taiwan Inst. Chem. Eng. 45, 1001–1006 (2014)

    Article  Google Scholar 

  44. Chaouati, N.; Soualah, A.; Chater, M.: Adsorption of phenol from aqueous solution onto zeolites Y modified by silylation. Comp. Ren. Chim. 16, 222–228 (2013)

    Article  Google Scholar 

  45. Liang, Z.; Zhaob, Z.; Sun, T.; Shi, W.; Cui, F.: Adsorption of quinolone antibiotics in spherical mesoporous silica: effects of the retained template and its alkyl chain length. J. Hazard. Mater. 305, 8–14 (2016)

    Article  Google Scholar 

  46. Barzamini, R.; Falamaki, C.; Mahmoudi, R.: Adsorption of ethyl, iso-propyl, n-butyl and iso-butyl mercaptans on AgX zeolite: equilibrium and kinetic study. Fuel 130, 46–53 (2014)

    Article  Google Scholar 

  47. Fukahori, S.; Fujiwara, T.; Ito, R.; Funamizu, N.: pH-dependent adsorption of sulfa drugs on high silica zeolite: modeling and kinetic study. Desalin 275, 237–242 (2011)

    Article  Google Scholar 

  48. Ötker, H.M.; Akmehmet-Balcıoğlu, I.: Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J. Hazard. Mater. 122, 251–258 (2005)

    Article  Google Scholar 

  49. Braschi, I.; Blasioli, S.; Gigli, L.; Gessa, C.E.; Alberto, A.; Martucci, A.: Removal of sulfonamide antibiotics from water: evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard Mater. 178(1–3), 218–225 (2010)

    Article  Google Scholar 

  50. Wang, Y.-J.; Jia, D.-A.; Sun, R.-J.; Zhu, H.-W.; Zhou, D.-M.: Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ. Sci. Technol. 42, 3254–3259 (2008)

    Article  Google Scholar 

  51. Samarghandi, M.R.; Al-Musawi, T.J.; Mohseni-Bandpi, A.; Zarrabi, M.: Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J. Mol. Liq. 211, 431–441 (2015)

    Article  Google Scholar 

  52. Zhou, Y.; Yang, Q.; Zhang, D.; Gan, N.; Li, Q.; Cuan, J.: Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens. Actu. B: Chem. 262, 137–143 (2018)

    Article  Google Scholar 

  53. Alidadi, H.; Dolatabadi, M.; Davoudi, M.; Barjasteh-Askari, F.; Jamali-Behnam, F.; Hosseinzadeh, A.: Enhanced removal of tetracycline using modified sawdust: optimization, isotherm, kinetics, and regeneration studies. Proc. Saf. Environ. Prot. 117, 51–60 (2018)

    Article  Google Scholar 

  54. Treacy, M.M.J.; Higgins, J.B.; Commission, I.Z.A.S.: Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier, Amsterdam (2007)

    Google Scholar 

  55. Kwak, J.-S.: Application of Taguchi and response surface methodologies for geometric error in surface grinding process. Int. J. Mach. Tool Manuf. 45, 327–334 (2005)

    Article  Google Scholar 

  56. Bradley, N.: The response surface methodology. Indiana University South Bend 71, 4–68 (2007)

    Google Scholar 

  57. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2008)

    Google Scholar 

  58. Schmidt, S.R.; Launsby, R.G.: Understanding Industrial Designed Experiments. Air Academy Press, Colorado Springs (1989)

    Google Scholar 

  59. Gorji, S.; Bahram, M.: Experimental design for the study and optimization of the effect of different surfactants on the spectrophotometric determination of sulfide based on phenothiazine dye production. Anal. Methods 2, 948–953 (2010)

    Article  Google Scholar 

  60. Po-Hsiang, C.; Li, Z.; Jiang, W.-T.; Jean, J.-S.: Adsorption and intercalation of tetracycline by swelling clay minerals Appl. Clay Sci. 46, 27–36 (2009)

  61. Huang, H.; Zou, Y.L.; Li, Y.N.: Experimental and modeling studies of sorption of tetracycline onto zeolite in the presence of copper(II). Adv. Mater. Res. 512–515, 2355–2360 (2012)

    Article  Google Scholar 

  62. Wang, Y.-J.; Jia, D.-A.; Sun, R.-J.; Zhu, H.-W.; Zhou, D.-M.: Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH Environ. Sci. Technol. 42(9), 3254–3259 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, A., Bayati, B. & Khamforoush, M. Synthesis and Application of Cu-X zeolite for Removal of Antibiotic from Aqueous Solution: Process Optimization Using Response Surface Methodology. Arab J Sci Eng 44, 5381–5397 (2019). https://doi.org/10.1007/s13369-018-3644-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3644-x

Keywords

Navigation