Skip to main content

Advertisement

Log in

A Unified AC–MTDC Power-Flow Algorithm with IDCPFC

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A unified power-flow algorithm of AC power systems integrated with multi-terminal high-voltage direct current (MTDC) grids incorporating the interline DC power-flow controller (IDCPFC) is presented in this paper. The MTDC grids are based on voltage-sourced converter (VSC) technology. Pulse-width modulation control is employed for the VSCs. As against most of the research works published in this area, in this algorithm, the VSC modulation indices are considered as unknowns. The IDCPFC considered for the power-flow management of the DC grid is a generalized one, with an arbitrary number of DC voltage sources. In the proposed model converter losses are also included. All case studies are carried out in MTDC grids embedded in the IEEE-300 bus test system. For all the case studies, the power-flow algorithms were implemented with MATLAB. In all occurrences, a mismatch error tolerance of \(10^{-10}\) p.u. was selected. Results obtained with case studies on AC–MTDC systems validate the proposed work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-ecoHrBnomics/statistical-review/bp-stats-review-2018-full-report.pdfHrB

  2. Valinejad, J.; Marzband, M.; Akorede, M.F.; Barforoshi, T.: Generation expansion planning in electricity market considering uncertainty in load demand and presence of strategic GENCOs. Electr. Power Syst. Res. 152, 92–104 (2017)

    Article  Google Scholar 

  3. Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerredo, J.M.; Lightbody, G.: Smart transactive energy framework in grid connected multiple home microgrids under independent and coalition operations. Renew. Energy 126, 95–106 (2018)

    Article  Google Scholar 

  4. Marzband, M.; Fouladfar, M.H.; Akorede, M.F.; Lightbody, G.; Pouresmaeil, E.: Framework for smart transactive energy in home microgrids considering coalition formation and demand side management. Sustain. Cities Soc. 40, 1 (2018)

    Article  Google Scholar 

  5. Tavakoli, M.; Shokridehaki, F.; Akorede, M.F.; Marzband, M.; Vechiu, I.; Pouresmaeil, E.: CVaR based energy management scheme for optimal resilience and operational cost in commercial building microgrids. Electr. Power Energy Syst. 100, 1–9 (2018)

    Article  Google Scholar 

  6. Marzband, M.; Javadi, M.; Pourmousavi, S.A.; Lightbody, G.: An advanced retail electricity market for active distribution systems and home microgrid interoperability based on game theory. Electr. Power Syst. Res. 157, 187–199 (2018)

    Article  Google Scholar 

  7. Tavakoli, M.; Shokridekhari, E.; Marzband, M.; Godina, R.; Pouresmaeil, E.: A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustain. Cities Soc. 41, 332–340 (2018)

    Article  Google Scholar 

  8. Khan, S.; Bhowmick, S.: A generalized power flow model of VSC based Hybrid AC–DC systems integrated with offshore wind farms. IEEE Trans. Sustain. Energy 2018, 1 (2018)

    Article  Google Scholar 

  9. Arrillaga, J.; Liu, Y.H.; Watson, N.R.: Flexible Power Transmission: The HVDC Options. Wiley, London (2007)

    Book  Google Scholar 

  10. Sood, V.K.: DVDC and FACTS Controllers—Applications of Static Converters in Power Systems. Kluwer, Dordrecht (2004)

    Google Scholar 

  11. Acha, E.; Agelidis, V.G.; Lara, O.Anaya; Miller, T.J.E.: Power Electronic Control in Electrical Systems. Newnes, Butterworth (2002)

    Google Scholar 

  12. Padiyar, K.R.: HVDC Power Transmission Systems, 2nd edn. New Age International Publishers, London (2012)

    Google Scholar 

  13. Yazdani, A.; Iravani, R.: Voltage-Sourced Converters in Power Systems: Modeling, Control and Applications, p. 171. Wiley, London (2010)

    Book  Google Scholar 

  14. Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D.: VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. 24(3), 592–602 (2009)

    Article  Google Scholar 

  15. Asplund, G.: Application of HVDC light to power system enhancement. In: Proceeding of IEEE PES Winter Meeting (January 2000)

  16. Blau, J.: Europe plans a north sea grid. IEEE Spect. 1, 12–13 (2010)

    Article  Google Scholar 

  17. Haileselassie, T.M.; Uhlen, K.: Power system security in a meshed north sea HVDC grid. IEEE Proc. Invited Pap. 101(4), 978–990 (2013)

    Article  Google Scholar 

  18. Zhang, X.P.: Multiterminal voltage-sourced converter-based HVDC models for power flow analysis. IEEE Trans. Power Syst. 19(4), 1877–1884 (2004)

    Article  Google Scholar 

  19. Angeles-Camacho, C.; Tortelli, O.L.; Acha, E.; Fuerte-Esquivel, C.R.: Inclusion of a high voltage DC voltage source converter model in a Newton raphson power flow algorithm. Proc. Inst. Elect. Eng. Gen., Transm. Distrib. 150(6), 691–696 (2003)

    Article  Google Scholar 

  20. Baradar, M.; Ghandhari, M.: A multi-option unified power flow approach for hybrid AC/DC grids incorporating multi-terminal VSC-HVDC. IEEE Trans. Power Syst. 28(3), 2376–2383 (2013)

    Article  Google Scholar 

  21. Gengyin, L.; Ming, Z.; Jie, H.; Guangkai, L.; Haifeng, L.: Power flow calculation of power systems incorporating VSC-HVDC. In: Proceeding of International Conference Power System Technology (PowerCon), vol. 2, pp. 1562–1566 (2004)

  22. Khan, S.; Bhowmick, S.: A novel power flow model of multiterminal VSC HVDC systems. Electr. Power Syst. Res. 133, 219–227 (2016)

    Article  Google Scholar 

  23. Jovcic, D.; Hajian, M.; Zhang, H.; Asplund, G.: Power flow control in dc transmission grids using mechanical and semiconductor based DC/DC devices. In: Proceeding of IET International Conference AC DC Power Transmission, pp. 1–6 (2012)

  24. Mu, Q.; Liang, J.; Li, Y.; Zhou, X.: Power flow control devices in DC grids. In: Proceeding of IEEE Power Energy Society General Meeting, pp. 1–7 (2012)

  25. Jovcic, D.; Ooi, B.: Developing DC transmission networks using DC transformers. IEEE Trans. Power Del. 25(4), 2535–2543 (2010)

    Article  Google Scholar 

  26. Jovcic, D.; Zhang, L.: LCL DC/DC converter for DC grids. IEEE Trans. Power Del. 28(4), 2071–2079 (2013)

    Article  Google Scholar 

  27. Jovcic, D.; Lin, W.: Multiport high power LCL DC hub for use in DC transmission grids. IEEE Trans. Power Del. 29(2), 760–768 (2014)

    Article  Google Scholar 

  28. Kish, G.; Ranjram, M.; Lehn, P.: A modular multilevel DC/DC converter with fault blocking capability for HVDC interconnects. IEEE Trans. Power Electron. 30(1), 148–162 (2015)

    Article  Google Scholar 

  29. Veilleux, E.; Ooi, B.: Multiterminal HVDC with thyristor power flow controller. IEEE Trans. Power Del. 27(3), 1205–1212 (2012)

    Article  Google Scholar 

  30. Series Connected DC/DC Converter for Controlling the Power Flow in a HVDC Power Transmission System, PCT WO 2012/037964A1 (2012)

  31. An Arrangement for Controlling the Electrical Power Transmission in a HVDC Power Transmission Systems, PCT WO 2013/091700A1 (2013)

  32. Mu, Q.; Liang, J.; Li, Y.; Zhou, X.: Power flow control devices in DC grids. In: IEEE Power and Energy Society General Meeting, pp. 1–7 (2012)

  33. Gyugyi, L.; Sen, K.K.; Schauder, C.D.: The interline power flow controller concept: a new approach to power flow management in transmission systems. IEEE Trans. Power Del. 14(3), 1115–1123 (1999)

    Article  Google Scholar 

  34. Barker, C.; Whitehouse, R.: A current flow controller for use in HVDC grids. In: IET International Conference on AC and DC Power Transmission (ACDC), pp. 1–5 (2012)

  35. Whitehouse, R.; Barker, C.: Current flow controller. US Patent Application, 2015/0180231 A1 (2015)

  36. Deng, N.; Wang, P.; Zhang, X.; Tang, G.; Cao, J.: A DC current flow controller for meshed modular multilevel converter multiterminal HVDC grids. CSEE J. Power Energy Syst. 1(1), 43–51 (2015)

    Article  Google Scholar 

  37. Chen, W.; Zhu, X.; Yao, L.Y.; Ruan, X.; Wang, Z.; Cao, Y.: An interline DC power flow controller (IDCPFC) for multi-terminal HVDC system. IEEE Trans. Power Del. 30(4), 2027–2036 (2015)

    Article  Google Scholar 

  38. Cao, J.; Du, W.; Wang, H.F.: Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks. IEEE Trans. Power Syst. 28(3), 3047–3055 (2013)

    Article  Google Scholar 

  39. Daelemans, G.: VSC-HVDC in meshed networks. M.Eng. Thesis, Katholieke Universiteit Leuven, Leuven (2008)

  40. http://www.ee.washington.edu/research/pstca

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shagufta Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Bhowmick, S. & Ahmad, T. A Unified AC–MTDC Power-Flow Algorithm with IDCPFC. Arab J Sci Eng 44, 6795–6804 (2019). https://doi.org/10.1007/s13369-018-3637-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3637-9

Keywords

Navigation