Skip to main content

Advertisement

Log in

Design and Experimental Investigation of Predictive Direct Power Control of Three-Phase Shunt Active Filter with Space Vector Modulation using Anti-windup PI Controller Optimized by PSO

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a robust control scheme for shunt active power filter based on predictive direct power control with space vector modulation. The proposed control strategy solves the problem of variable switching frequency of predictive control strategy, and it offers simple and robust hardware implementation. It uses a discrete model of the system based on time domain to generate the average voltage vector, at each sampling period, with the aim of canceling the errors between the estimated active and reactive power values and their references. Concerning the DC-side voltage of the inverter, anti-windup PI controller is tuned offline using particle swarm optimization algorithm to deliver an optimal performance in DC bus voltage regulation. The overall system has been designed, simulated and validated experimentally; the obtained results in different phases demonstrate the higher performance and the better efficiency of the proposed system in terms of power quality enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Emadi, A.; Abdolhosein, N.; Bekiarov, S.: Uninterruptible Power Supplies and Active Filters. CRC Press, Boca Raton (2005)

    Google Scholar 

  2. Bouzidi, M.; Benaissa, A.; Barkat, S.: Hybrid direct power/current control using feedback linearization of three-level four-leg voltage source shunt active power filter. Int. J. Electr. Power Energy Syst. 61, 629–646 (2014). https://doi.org/10.1016/j.ijepes.2014.03.071

    Article  Google Scholar 

  3. Mahajan, V.; Agarwal, P.; Gupta, H.O.: Implementation of high-voltage multilevel harmonic filter based on rotated carrier modulation and artificial intelligence-based controllers. Arab. J. Sci. Eng. 39, 7127–7143 (2014). https://doi.org/10.1007/s13369-014-1280-7

    Article  Google Scholar 

  4. Saidi, S.; Abbassi, R.; Chebbi, S.: Quality improvement of shunt active power filter with direct instantaneous power estimator based on Virtual Flux. Int. J. Control. Autom. Syst. 14, 1309–1321 (2016). https://doi.org/10.1007/s12555-014-0264-4

    Article  Google Scholar 

  5. Chebabhi, A.; Fellah, M.K.; Kessal, A.; Benkhoris, M.F.: Comparative study of reference currents and DC bus voltage control for three-phase four-wire four-leg SAPF to compensate harmonics and reactive power with 3D SVM. ISA Trans. 57, 360–372 (2015). https://doi.org/10.1016/j.isatra.2015.01.011

    Article  Google Scholar 

  6. Sasaki, H.; Machida, T.: A new method to eliminate AC harmonic currents by magnetic compensation–consideration on basic design. IEEE Trans. Power Appl. Syst. 90, 2009–2019 (1971)

    Article  Google Scholar 

  7. Shankar, V.K.A.; Kumar, N.S.: Implementation of shunt active filter for harmonic compensation in a 3 phase 3 wire distribution network. Energy Procedia 117, 172–179 (2017). https://doi.org/10.1016/j.egypro.2017.05.120

    Article  Google Scholar 

  8. Abdul Rahman, N.F.; Mohd Radzi, M.A.; Che Soh, A.; Mariun, N.; Abd Rahim, N.: Significant insights into the operation of DC-link voltage control of a shunt active power filter using different control algorithms: a comparative study. Turk. J. Electr. Eng. Comput. Sci. 25, 2033–2043 (2017). https://doi.org/10.3906/elk-1504-17

    Article  Google Scholar 

  9. Prakash Mahela, O.; Gafoor Shaik, A.: Topological aspects of power quality improvement techniques: a comprehensive overview. Renew. Sustain. Energy Rev. 58, 1129–1142 (2016). https://doi.org/10.1016/j.rser.2015.12.251

    Article  Google Scholar 

  10. Benaissa, A.; Rabhi, B.; Benkhoris, M.F.; Zellouma, L.: An investigation on combined operation of five-level shunt active power filter with PEM fuel cell. Electr. Eng. 99, 649–663 (2017). https://doi.org/10.1007/s00202-016-0394-1

    Article  Google Scholar 

  11. Saad, S.; Zellouma, L.: Fuzzy logic controller for three-phase shunt active filter compensating harmonics and reactive power simultaneously. Electr. Power Syst. Res. 79, 1337–1341 (2009). https://doi.org/10.1016/j.epsr.2009.04.003

    Article  Google Scholar 

  12. Zellouma, L.; Rabhi, B.; Krama, A.; Benaissa, A.; Benkhoris, M.F.: Simulation and real time implementation of three phase four wire shunt active power filter based on sliding mode controller. Rev. Roum. Des Sci. Tech. Ser. Electrotech. Energ. 63, 77–82 (2018)

    Google Scholar 

  13. Benchouia, M.T.; Ghadbane, I.; Golea, A.; Srairi, K.; Benbouzid, M.E.H.: Implementation of adaptive fuzzy logic and PI controllers to regulate the DC bus voltage of shunt active power filter. Appl. Soft Comput. J. 28, 125–131 (2015). https://doi.org/10.1016/j.asoc.2014.10.043

    Article  Google Scholar 

  14. Pigazo, A.; Moreno, V.M.; Estébanez, E.J.: A recursive park transformation to improve the performance of synchronous reference frame controllers in shunt active power filters. IEEE Trans. Power Electron. 24, 2065–2075 (2009). https://doi.org/10.1109/TPEL.2009.2025335

    Article  Google Scholar 

  15. Chaoui, A.; Gaubert, J.-P.; Krim, F.: Power quality improvement using DPC controlled three-phase shunt active filter. Electr. Power Syst. Res. 80, 657–666 (2010). https://doi.org/10.1016/j.epsr.2009.10.020

    Article  Google Scholar 

  16. Krama, A.; Laid, Z.; Boualaga, R.: Anti-windup proportional integral strategy for shunt active power filter interfaced by photovoltaic system using technique of direct power control. Rev. Roum. Sci. Techn. Electrotechn. Energ. 62, 252–257 (2017)

    Google Scholar 

  17. Aissa, O.; Moulahoum, S.; Colak, I.; Babes, B.; Kabache, N.: Analysis and experimental evaluation of shunt active power filter for power quality improvement based on predictive direct power control. Environ. Sci. Pollut. Res. (2017). https://doi.org/10.1007/s11356-017-0396-1

  18. Ouchen, S.; Betka, A.; Gaubert, J.; Abdeddaim, S.: Simulation and real time implementation of predictive direct power control for three phase shunt active power filter using robust phase-locked loop. Simul. Model. Pract. Theory 78, 1–17 (2017). https://doi.org/10.1016/j.simpat.2017.08.003

    Article  Google Scholar 

  19. Subudhi, B.; Panda, P.C.; Panigrahi, R.: Model predictive-based shunt active power filter with a new reference current estimation strategy. IET Power Electron. 8, 221–233 (2015). https://doi.org/10.1049/iet-pel.2014.0276

    Article  Google Scholar 

  20. Boukezata, B.; Gaubert, J.P.; Chaoui, A.; Hachemi, M.: Predictive current control in multifunctional grid connected inverter interfaced by PV system. Sol. Energy 139, 130–141 (2016). https://doi.org/10.1016/j.solener.2016.09.029

    Article  Google Scholar 

  21. Bouafia, A.; Gaubert, J.-P.; Krim, F.: Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM). IEEE Trans. Power Electron. 25, 228–236 (2010). https://doi.org/10.1109/TPEL.2009.2028731

    Article  Google Scholar 

  22. Tarisciotti, L.; Formentini, A.; Gaeta, A.; Degano, M.; Zanchetta, P.; Rabbeni, R.; Pucci, M.: Model predictive control for shunt active filters with fixed switching frequency. IEEE Trans. Ind. Appl. (2016). https://doi.org/10.1109/TIA.2016.2606364

  23. van der Lee, J.H.; Svrcek, W.Y.; Young, B.R.: A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making. ISA Trans. 47, 53–59 (2008). https://doi.org/10.1016/j.isatra.2007.06.003

    Article  Google Scholar 

  24. Sakthivel, A.; Vijayakumar, P.; Senthilkumar, A.; Lakshminarasimman, L.; Paramasivam, S.: Experimental investigations on ant colony optimized PI control algorithm for shunt active power filter to improve power quality. Control Eng. Pract. 42, 153–169 (2015). https://doi.org/10.1016/j.conengprac.2015.04.013

    Article  Google Scholar 

  25. Kabalci, Y.; Kockanat, S.; Kabalci, E.: A modified ABC algorithm approach for power system harmonic estimation problems. Electr. Power Syst. Res. 154, 160–173 (2018). https://doi.org/10.1016/j.epsr.2017.08.019

    Article  Google Scholar 

  26. Sun, J.; Lai, C.; Wu, X.: Particle Swarm Optimization: Classical and Quantum Perspectives. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  27. Eberhart, R.; Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995). https://doi.org/10.1109/MHS.1995.494215

  28. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. J. 13, 2592–2612 (2013). https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  29. Abido, M.A.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 17, 406–413 (2002). https://doi.org/10.1109/TEC.2002.801992

    Article  Google Scholar 

  30. Ghadimi, N.; Afkousi-Paqaleh, A.; Emamhosseini, A.: A PSO-based fuzzy long-term multi-objective optimization approach for placement and parameter setting of UPFC. Arab. J. Sci. Eng. 39, 2953–2963 (2014). https://doi.org/10.1007/s13369-013-0884-7

    Article  MATH  Google Scholar 

  31. vandenBergh, F.; Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8, 225–239 (2004). https://doi.org/10.1109/TEVC.2004.826069

    Article  Google Scholar 

  32. Pati, S.; Sahu, B.K.; Panda, S.: Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Gener. Transm. Distrib. 8, 1789–1800 (2014). https://doi.org/10.1049/iet-gtd.2014.0097

    Article  Google Scholar 

  33. Benhabib, M.C.; Saadate, S.: A new robust experimentally validated phase-locked loop for power electronic control. EPE J. 15, 36–48 (2005). https://doi.org/10.1080/09398368.2005.11463595

    Article  Google Scholar 

  34. Rodriguez, J.; Cortés, P.: Predictive Control of Power Converters and Electrical Drives. Wiley, New York (2012)

    Book  Google Scholar 

  35. Ohr, J.: Signals and Systems Anti-windup and Control of Systems with Multiple Input Saturations Tools, Solutions and Case Studies (2003)

  36. Krama, A.; Zellouma, L.; Rabhi, B.: Improved control of shunt active power filter connected to a photovoltaic system using technique of direct power control. In: Proceedings of 2016 8th International Conference on Modelling, Identification and Control, ICMIC 2016 (2017)

  37. Shi, Y.; Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence. (Cat. No.98TH8360), pp. 69–73 (1998). https://doi.org/10.1109/ICEC.1998.699146

Download references

Acknowledgements

The authors gratefully acknowledge the Algerian General Direction of Research for providing the facilities to accomplish this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbasset Krama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krama, A., Zellouma, L., Benaissa, A. et al. Design and Experimental Investigation of Predictive Direct Power Control of Three-Phase Shunt Active Filter with Space Vector Modulation using Anti-windup PI Controller Optimized by PSO. Arab J Sci Eng 44, 6741–6755 (2019). https://doi.org/10.1007/s13369-018-3611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3611-6

Keywords

Navigation