Skip to main content

Advertisement

Log in

Multihop Multibranch Spectrum Sensing for Cognitive Radio Networks

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we derive the detection probability of cooperative spectrum sensing using the energy detector with multiple branches and multihops in each branch. The primary signal passes through \(L_{i}\) hops in the ith branch. Two cooperation protocols are considered. In the first one, the fusion center combines the signal of all branches, and it is known as all-participating relaying. It requires multiples channels for branch transmissions to avoid interferences. In the second one, only the branches with the highest SNR are activated. The results are valid for any number of hops and branches. We also consider situations where the direct link is available or not. We have studied the evolution of the detection probability with respect to the signal-to-noise ratio for a constant false alarm rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. FCC.: Spectrum policy task force, In: Technical Report (2002)

  2. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23, 201–220 (2005)

    Article  Google Scholar 

  3. Digham, F.F.; Alouini, M.S.; Simon, M.K.: On the energy detection of unknown signals over fading channels. IEEE Trans. Commun. 55(1), 21–24 (2007)

    Article  Google Scholar 

  4. Bhargavi, D.; Murthy, C.R.: Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In: SPAWC (2010)

  5. Man, L.; Li, Y.; Demir, A.: Matched filtering assisted energy detection for sensing weak primary user signals. In: ICASSP (2012)

  6. Akyildiz, I.F.; Lo, B.F.; Balakrishnan, R.: Cooperative spectrum sensing in cognitive radio networks: a survey. Phys. Commun. 4, 40–62 (2011)

    Article  Google Scholar 

  7. Ghasemi, A.; Sousa, E.: Collaborative spectrum sensing for opportunistic access in fading environments. In: Proceedings of IEEE DySPAN, pp. 131–136 (2005)

  8. Visotsky, E.; Kuffner, S.; Peterson, R.: On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In: Proceedings of IEEE DySPAN, pp. 338–245 (2005)

  9. Unnikrishnan, J.; Veeravalli, V.V.: Cooperative sensing for primary detection in cognitive radio. IEEE J. Sel. Top. Signal Process. 2, 18–27 (2008)

    Article  Google Scholar 

  10. Alhamad, R.; Wang, H.; Yao, Y.-D.: Cooperative spectrum sensing with random access reporting channels in cognitive radio networks. IEEE Trans. Veh. Technol. 99, 1–13 (2017)

    Google Scholar 

  11. Li, Z.; Yu, F.; Huang, M.: A cooperative spectrum sensing consensus scheme in cognitive radio. In: Proceedings of INFOCOM, pp. 2546–2550 (2009)

  12. Ganesa, G.; Li, Y.G.: Cooperative spectrum sensing in cognitive radio, part I: two user networks. IEEE Trans. Wirel. Commun. 6, 2204–2213 (2007)

    Article  Google Scholar 

  13. Ganesa, G.; Li, Y.G.: Cooperative spectrum sensing in cognitive radio, part II: multiuser networks. IEEE Trans. Wirel. Commun. 6, 2204–2213 (2007)

    Article  Google Scholar 

  14. Zhang, W.; Letaief, K.: Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Trans. Wirel. Commun. 7(12), 4761–4766 (2008)

    Article  Google Scholar 

  15. Ma, J.; Zhao, G.; Li, Y.: Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 7(11), 4502–4507 (2008)

    Article  Google Scholar 

  16. Caso, G.; De Nardis, L.; Ferrante, G.C.; Di Benedetto, M.G.: Cooperative spectrum sensing based on majority decision under CFAR and CDR constraints. In: IEEE PIMRC (2013)

  17. Ejaz, W.; Hattab, G.; Cherif, N.; Ibnkahla, M.; Abdelkefi, F.; Siala, M.: Cooperative spectrum sensing with heterogeneous devices: hard combining versus soft combining. IEEE Syst. J. 99, 1–12 (2017)

    Google Scholar 

  18. Guo, H.; Reisi, N.; Jiang, W.; Luo, W.: Soft combination for cooperative spectrum sensing in fading channels. IEEE Access 5, 975–986 (2017)

    Article  Google Scholar 

  19. Guo, H.; Jiang, W.; Luo, W.: Linear soft combination for cooperative spectrum sensing in cognitive radio networks. IEEE Commun. Lett. 21(7), 1573–1576 (2017)

    Article  Google Scholar 

  20. Hwang, I.; Lee, J.W.: Cooperative spectrum sensing with quantization combining over imperfect feedback channels. IEEE Trans. Signal Process. 65(3), 721–732 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kun, D.; Morgan, N.A.: A new low-cost CFAR detector for spectrum sensing with cognitive radio systems. In: IEEE Aerospace Conference, pp. 1–8 (2009)

  22. Jian, G.; Xiang-Wei, M.; Ying-ning, P.; You, H.: The optimality in Neyman-Pearson sense in the distributed CFAR detection with multisensor. In: IEEE Radar Conference, pp. 68–72 (2002)

  23. Caso, G.; De Nardis, L.; Ferrante, G.C.; Di Benedetto, M.-G.: Cooperative spectrum sensing based on Majority decision under CFAR and CDR constraints. In: 2013 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), pp. 51–55 (2013)

  24. Chen, L.; Chen, W.; Wang, B.; Zhang, X.; Chen, H.; Yang, D.: System-level simulation methodology and platform for mobile cellular systems. IEEE Commun. Mag. 49(7), 148–155 (2011)

    Article  Google Scholar 

  25. Yang, X.; Peng, S.; Zhu, P.; Chen, H.; Cao, X.: Effect of correlations on the performance of GLRT detector in cognitive radios. IEICE Trans. Commun. 94–B(4), 1089–1093 (2011)

    Article  Google Scholar 

  26. Wang, J.; Chen, H.; Li, S.: SoftOutput MMSE VBLAST receiver with MMSE channel estimation under correlated Rician fading MIMO Channels. In: Wiley Wireless Communications and Mobile Computing, (2011)

  27. Wang, J.; Wen, O.Y.; Chen, H.; Li, S.: Power allocation between pilot and data symbols for MIMO systems with MMSE detection under MMSE channel estimation. EURASIP J. Wirel. Commun. Netw. 2011, 785437 (2011)

    Article  Google Scholar 

  28. Wang, C.; Chen, H.; Yin, Q.; Feng, A.; Molisch, A.F.: Multi-user two-way relay networks with distributed beamforming. IEEE Trans. Wirel. Commun. 10(10), 3460–3471 (2011)

    Article  Google Scholar 

  29. Li, Y.; Yin, Q.; Sun, L.; Chen, H.; Wang, H.: A channel quality metric in opportunistic selection with outdated CSI over Nakagami-m fading channels. In: IEEE Transaction on Vehicular Technology (2012)

  30. BenMimoune, A.; Khasawneh, F.A.; Kadoch, M.; Rong, B.: Resource allocation framework in 5G multi-hop relay system. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6, (2015)

  31. Schmittner, M.; Asadi, A.; Hollick, M.: SEMUD: secure multi-hop device-to-device communication for 5G public safety networks. In: 2017 IFIP Networking Conference (IFIP Networking) and Workshops, pp. 1–9, (2017)

  32. Sahoo, B.P.S.; Yao, C.-H.; Wei, H.-Y.: Millimeter-wave multi-hop wireless backhauling for 5G cellular networks. In: IEEE 85th Vehicular Technology Conference (VTC Spring) (2017)

  33. Atapattu, S.; Tellambura, C.; Jiang, H.: Relay based cooperative spectrum sensing in cognitive radio networks. In: GLOBECOM (2009)

  34. Atapattu, S.; Tellambura, C.; Jiang, H.: Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 4(10), 1232–1241 (2011)

    Article  Google Scholar 

  35. Zhao, Y.; Adve, R.; Lim, T.J.: Symbol error rate of selection amplify and forward relay systems. IEEE Commun. Lett. 10, 757–759 (2006)

    Article  Google Scholar 

  36. Ikki, S.S.; Ahmed, M.H.: Performance of multiple-relay cooperative diversity systems with best relay selection over Rayleigh fading channels. EURASIP J. Adv. Signal Process. 2008, 580368 (2008)

    Article  Google Scholar 

  37. Barua, B.; Ngo, H.Q.; Shin, H.: On the SEP of cooperative diversity with opportunistic relaying. IEEE Commun. Lett. 12(10), 727–729 (2008)

    Article  Google Scholar 

  38. Digham, F.F.; Alouini, M.S.; Simon, M.K.: On the energy detection of unknown signals over fading channels. In: Proceedings of IEEE ICC Conference, pp. 3575–3579 (2003)

  39. Proakis, J.G.: Digital Communications, 3rd edn. Mc Graw Hill, New York (1995)

    MATH  Google Scholar 

  40. Hasna, M.; Alouini, M.S.: End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Trans. Wirel. Commun. 2, 1126–1131 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R., Boujemaa, H. Multihop Multibranch Spectrum Sensing for Cognitive Radio Networks. Arab J Sci Eng 44, 6711–6726 (2019). https://doi.org/10.1007/s13369-018-3600-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3600-9

Keywords

Navigation