Skip to main content

Advertisement

Log in

Modified Spatial Modulation: An Alternate to Spatial Multiplexing for 5G-Based Compact Wireless Devices

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Spatial modulation (SM) is a spectrum and energy-efficient simple digital modulation scheme, which uses the transmitter antenna indices to convey the additional bits. The conventional SM variants have high complex receivers and offer poor performance under spatially correlated and line-of-sight (LOS) channel conditions. In this work, a new variant, modified spatial modulation (MSM) for \(8 \times 8\) multiple input multiple output (MIMO) configuration is proposed, which uses one or two transmitter antennas based on the incoming bit patterns. The adaptive mapping used at the transmitter side for antenna selection and modified maximum likelihood (ML) detection used at the receiver side reduces the computational complexity. Every possible bit per channel use (bpcu) is mapped to a unique transmit symbol vector, which minimizes the receiver complexity, while combating the effect of spatial correlation. Through simulation results, it is observed that the average bit error rate (ABER) performance of the MSM-ML scheme is much better than that of the conventional SM-ML, generalized spatial modulation (GSM)-ML and redesigned spatial modulation (ReSM)-ML schemes under spatially correlated and LOS channel conditions. The promising results prove that the proposed scheme can be a better alternative to spatial multiplexing (SMX) in battery-driven compact handheld devices, which can be used for international mobile telecommunication-2020 (IMT-2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basar, E.; Wen, M.; Mesleh, R.; Di Renzo, M.; Xiao, Y.; Haas, H.: Index modulation techniques for next-generation wireless networks. IEEE Access 5, 16693–16746 (2017)

    Article  Google Scholar 

  2. Agiwal, M.; Saxena, N.; Roy, A.: Ten commandments of emerging 5G networks. Wirel. Pers. Commun. (2017). https://doi.org/10.1007/s11277-017-4991-8

    Google Scholar 

  3. Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  4. Rappaport, T.S.; Roh, W.; Cheun, K.: Wireless engineers long considered high frequencies worthless for cellular systems. They couldn’t be more wrong. IEEE Spectr. 51(9), 34 (2014)

    Article  Google Scholar 

  5. GSMA Intelligence: Understanding 5G: perspectives on future technological advancements in mobile. White paper, pp. 1–26 (2014)

  6. Chen, S.; Zhao, J.: The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 52(5), 36–43 (2014)

    Article  Google Scholar 

  7. Prasad, R.: 5G: 2020 and beyond. River Publishers, Seattle (2014)

    Google Scholar 

  8. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D.: On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017)

    Article  Google Scholar 

  9. Jagannatham, A.K.: Principles of Modern Wireless Communication Systems. McGraw-Hill Education, London (2015)

    Google Scholar 

  10. Basar, E.: Index modulation techniques for 5G wireless networks. IEEE Commun. Mag. 54(7), 168–175 (2016)

    Article  Google Scholar 

  11. Mesleh, R.Y.: Spatial modulation: a spatial multiplexing technique for efficient wireless data transmission. Doctoral dissertation, Jacobs University Bremen (2007)

  12. Öztürk, E.; Basar, E.; Crpan, H.A.: Spatial modulation GFDM: a low complexity MIMO-GFDM system for 5G wireless networks. In: 2016 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–5. IEEE (2016)

  13. Mesleh, R.Y.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S.: Spatial modulation. IEEE Trans. Veh. Technol. 57(4), 2228–2241 (2008)

    Article  Google Scholar 

  14. Liu, X.; Wesel, R.D.: Pro le Optimal 8-QAM and 32-QAM Constellations. In: Thirty-Sixth Annual Allerton Conference on Communications, Control, and Computing (1998)

  15. Lee, H.; Lee, B.; Lee, I.: Iterative detection and decoding with an improved V-BLAST for MIMO-OFDM systems. IEEE J. Sel. Areas Commun. 24(3), 504–513 (2006)

    Article  Google Scholar 

  16. Canbilen, A.E.; Alsmadi, M.M.; Basar, E.; Ikki, S.S.; Gultekin, S.S.; Develi, I.: Spatial modulation in the presence of I/Q imbalance: optimal detector and performance analysis. IEEE Commun. Lett. 22, 1572–1575 (2018)

    Article  Google Scholar 

  17. Younis, A.; Serafimovski, N.; Mesleh, R.; Haas, H.: Generalized spatial modulation. In: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1498–1502. IEEE (2010)

  18. Younis, A.: Spatial Modulation: Theory to Practice. University of Edinburgh, Edinburgh (2014)

    Google Scholar 

  19. Mesleh, R.; Ikki, S.S.; Aggoune, H.M.: Quadrature spatial modulation. IEEE Trans. Veh. Technol. 64(6), 2738–2742 (2015)

    Article  Google Scholar 

  20. Afana, A.; Atawi, I.; Ikki, S.; Mesleh, R.: Energy efficient quadrature spatial modulation MIMO cognitive radio systems with imperfect channel estimation. In: 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–5. IEEE (2015)

  21. Li, J.; Jiang, X.; Yan, Y.; Yu, W.; Song, S.; Lee, M.H.: Low complexity detection for quadrature spatial modulation systems. Wirel. Pers. Commun. 95(4), 4171–4183 (2017)

    Article  Google Scholar 

  22. Mesleh, R.; Ikki, S.S.; Aggoune, H.M.: Quadrature spatial modulation performance analysis and impact of imperfect channel knowledge. Trans. Emerg. Telecommun. Technol. 28(1), e2905 (2017)

    Article  Google Scholar 

  23. Luna-Rivera, J.M.; Gonzalez-Perez, M.G.: An improved spatial modulation scheme for MIMO channels. In: 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 1–5. IEEE (2012)

  24. Cheng, C.C.; Sari, H.; Sezginer, S.; Su, Y.T.: Enhanced spatial modulation with multiple constellations. In: 2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–5. IEEE (2014)

  25. Cheng, C.C.; Sari, H.; Sezginer, S.; Su, Y.T.: Enhanced spatial modulation with multiple signal constellations. IEEE Trans. Commun. 63(6), 2237–2248 (2015)

    Article  Google Scholar 

  26. Tang, Q.; Xiao, Y.; Yang, P.; Yu, Q.; Li, S.: A new low-complexity near-ML detection algorithm for spatial modulation. IEEE Wirel. Commun. Lett. 2(1), 90–93 (2013)

    Article  Google Scholar 

  27. Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.; Ceron, A.: Space shift keying modulation for MIMO channels. IEEE Trans. Wirel. Commun. 8(7), 3692–3703 (2009)

    Article  Google Scholar 

  28. Xiao, Y.; Yang, Z.; Dan, L.; Yang, P.; Yin, L.; Xiang, W.: Low-complexity signal detection for generalized spatial modulation. IEEE Commun. Lett. 18(3), 403–406 (2014)

    Article  Google Scholar 

  29. Younis, A.; Sinanovic, S.; Di Renzo, M.; Mesleh, R.; Haas, H.: Generalised sphere decoding for spatial modulation. IEEE Trans. Commun. 61(7), 2805–2815 (2013)

    Article  Google Scholar 

  30. Del Moral, P.; Doucet, A.; Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  32. Glover, F.; Laguna, M.: Tabu search. In: Handbook of Combinatorial Optimization. Springer, New York, pp. 3261–3362 (2013)

  33. Mesleh, R.; Di Renzo, M.; Haas, H.; Grant, P.M.: Trellis coded spatial modulation. IEEE Trans. Wirel. Commun. 9(7), 2349–2361 (2010)

    Article  Google Scholar 

  34. Vladeanu, C.: Turbo trellis-coded spatial modulation. In: 2012 IEEE Global Communications Conference (GLOBECOM), pp. 4024–4029. IEEE (2012)

  35. Yigit, Z.; Basar, E.; Mesleh, R.: Trellis coded quadrature spatial modulation. Phys. Commun. 29, 147–155 (2018)

    Article  Google Scholar 

  36. Chau, Y.A.; Yu, S.H.: Space modulation on wireless fading channels. In: IEEE VTS 54th Vehicular Technology Conference, 2001. VTC 2001 Fall, vol. 3, pp. 1668–1671. IEEE (2001)

  37. Haas, H.; Costa, E.; Schulz, E.: Increasing spectral efficiency by data multiplexing using antenna arrays. In: The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, Vol. 2, pp. 610–613. IEEE (2002)

  38. Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.: Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett. 12(8), 545–547 (2008)

    Article  Google Scholar 

  39. Di Renzo, M.; Haas, H.: Performance comparison of different spatial modulation schemes in correlated fading channels. In: 2010 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2010)

  40. Simha, G.G.; Koila, S.; Neha, N.; Raghavendra, M.A.N.S.; Sripati, U.: Redesigned spatial modulation for spatially correlated fading channels. Wirel. Pers. Commun. 97(4), 5003–5030 (2017)

    Article  Google Scholar 

  41. Quitin, F.; Oestges, C.; Horlin, F.; De Doncker, P.: A polarized clustered channel model for indoor multiantenna systems at 3.6 GHz. IEEE Trans. Veh. Technol. 59(8), 3685–3693 (2010)

    Article  Google Scholar 

  42. Al-Dhahir, N.: FIR channel-shortening equalizers for MIMO ISI channels. IEEE Trans. Commun. 49(2), 213–218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Oestges, C.: Validity of the Kronecker model for MIMO correlated channels. In: IEEE 63rd Vehicular Technology Conference, 2006. VTC 2006-Spring, vol. 6, pp. 2818–2822. IEEE (2006)

  44. Auer, G.; Giannini, V.; Desset, C.; Godor, I.; Skillermark, P.; Olsson, M.; Fehske, A.: How much energy is needed to run a wireless network? IEEE Wirel. Commun. 18(5), 30–38 (2011)

    Article  Google Scholar 

  45. Mesleh, R.; Hiari, O.; Younis, A.; Alouneh, S.: Transmitter design and hardware considerations for different space modulation techniques. IEEE Trans. Wirel. Commun. 16(11), 7512–7522 (2017)

    Article  Google Scholar 

  46. Minicircuits SWSPDT. https://www.minicircuits.com/WebStore. Accessed Mar 13, 2017 (2017)

  47. Mesleh, R.; Hiari, O.; Younis, A.: Generalized space modulation techniques: hardware design and considerations. Phys. Commun. 26, 87–95 (2018)

    Article  Google Scholar 

  48. Microship: 16-Bit Microcontrollers. http://eu.mouser.com/ProductDetail/Microchip-Technology/PIC24FJ64GB406-I-PT. Accessed Mar 13, 2017 (2017)

  49. Mouser: Serial to parallel logic converters. http://eu.mouser.com/ProductDetail/Texas-Instruments/SN74LV8153PWR. Accessed Mar 13, 2017 (2017)

  50. Skyworks: RF amplifier. https://www.everythingrf.com/products/microwave-rfamplifiers/skyworks/567-7-sky66296-11. Accessed Jun 3, 2017 (2017)

  51. Digikey: RF Transciver ICs. http://www.digikey.com/product-detail/en/analog-devicesinc/AD9364BBCZ/AD9364BBCZ-ND/4747823. Accessed Mar 13, 2017 (2017)

  52. Bacon, P.; Fischer, D.; Lourens, R.: Overview of RF switch technology and applications. Microwave J. 57(7), 76–88 (2014)

    Google Scholar 

  53. Mobile Broadband Evolution Towards 5G: 3GPP Rel-12 & Rel-13 and Beyond (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthi Murugadass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaravelu, V.B., Jaiswal, G., Gudla, V.V. et al. Modified Spatial Modulation: An Alternate to Spatial Multiplexing for 5G-Based Compact Wireless Devices. Arab J Sci Eng 44, 6693–6709 (2019). https://doi.org/10.1007/s13369-018-3572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3572-9

Keywords

Navigation