Skip to main content
Log in

A Novel Liver Image Classification Method Using Perceptual Hash-Based Convolutional Neural Network

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Classification of liver masses plays an important role in early diagnosis of patients. This paper proposes a method to reduce the liver computed tomography (CT) images classification time and maintain the classification performance above an acceptable threshold by using convolutional neural network (CNN). A hybrid model called fused perceptual hash-based CNN (F-PH-CNN) is proposed by using a perceptual hash function together with the CNN. The proposed method has been designed for differential diagnosis between benign and malignant masses using CT images. The most important feature of the perceptual hash functions is to obtain the salient features of images. In the proposed F-PH-CNN method, DWT–SVD-based perceptual hash functions are used. The study uses CT images of 41 benign and 34 malign samples obtained from Elazig Education and Research Hospital. These samples were augmented up to 112 samples. The experimental results show that the CNN features achieved a better classification performance in which the ANN simulation results validate that the all output data with 98.2% success. The proposed method might also address the clinical computer-aided diagnosis of liver masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D.: Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90 (2011)

    Article  Google Scholar 

  2. Arakeri, M.P. : Recent advances and future potential of computer aided diagnosis of liver cancer on computed tomography images. In: Computer Networks and Intelligent Computing, pp. 246–251. Springer, Berlin (2011).

  3. Wu, K.; Chen, X.; Ding, M.: Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Opt. Int. J. Light Electron Opt. 125(15), 4057–4063 (2014)

    Article  Google Scholar 

  4. Jabarulla, M.Y.; Lee, H.N.: Computer aided diagnostic system for ultrasound liver images: a systematic review. Opt. Int. J. Light Electron Opt. 140, 1114–1126 (2017)

    Article  Google Scholar 

  5. Alahmer, H.; Ahmed, A.: Computer-aided classification of liver lesions from CT images based on multiple ROI. Proc. Comput. Sci. 90, 80–86 (2016)

    Article  Google Scholar 

  6. Kumar, S.S.; Moni, R.S.; Rajeesh, J.: Liver tumor diagnosis by gray level and contourlet coefficients texture analysis. In: 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET), pp. 557–562. IEEE (2012)

  7. Sabih, D.; Hussain, M.: Automated classification of liver disorders using ultrasound images. J. Med. Syst. 36(5), 3163–3172 (2012)

    Article  Google Scholar 

  8. Acharya, U.R.; Sree, S.V.; Ribeiro, R.; Krishnamurthi, G.; Marinho, R.T.; Sanches, J.; Suri, J.S.: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Med. Phys. 39(7), 4255–4264 (2012)

    Article  Google Scholar 

  9. Virmani, J.; Kumar, V.; Kalra, N.; Khandelwal, N.: SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. J. Digit. Imaging 26(3), 530–543 (2013)

    Article  Google Scholar 

  10. Virmani, J.; Kumar, V.; Kalra, N.; Khandelwal, N.: Prediction of liver cirrhosis based on multiresolution texture descriptors from B-mode ultrasound. Int. J. Converg. Comput. 1(1), 19–37 (2013)

    Article  Google Scholar 

  11. Virmani, J.; Kumar, V.; Kalra, N.; Khandelwal, N.: A comparative study of computer-aided classification systems for focal hepatic lesions from B-mode ultrasound. J. Med. Eng. Technol. 37(4), 292–306 (2013)

    Article  Google Scholar 

  12. Virmani, J.; Kumar, V.; Kalra, N.; Khandelwa, N.: PCA-SVM based CAD system for focal liver lesions using B-mode ultrasound images. Def. Sci. J. 63(5), 478 (2013)

    Article  Google Scholar 

  13. Virmani, J.; Kumar, V.; Kalra, N.; Khandelwal, N.: Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound. J. Digit. Imaging 27(4), 520–537 (2014)

    Article  Google Scholar 

  14. Neogi, N.; Adhikari, A.; Roy, M.: Classification of ultrasonography images of human fatty and normal livers using GLCM textural features. In: Current Trends in Technology and Science, vol. 3, pp. 252–259 (2014)

  15. Rivas, E.C.; Moreno, F.; Benitez, A.; Morocho, V.; Vanegas, P.; Medina, R.: Hepatic Steatosis detection using the co-occurrence matrix in tomography and ultrasound images. In 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA), pp. 1–7. IEEE (2015)

  16. Wu, J.Y.; Beland, M.; Konrad, J.; Tuomi, A.; Glidden, D.; Grand, D.; Merck, D.: Quantitative ultrasound texture analysis for clinical decision making support. In: SPIE Medical Imaging, pp. 94190W–94190W. International Society for Optics and Photonics (2015)March.

  17. Hwang, Y.N.; Lee, J.H.; Kim, G.Y.; Jiang, Y.Y.; Kim, S.M.: Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network. Bio Med. Mater. Eng. 26(s1), S1599–S1611 (2015)

    Article  Google Scholar 

  18. Acharya, U.R.; Fujita, H.; Bhat, S.; Raghavendra, U.; Gudigar, A.; Molinari, F.; Ng, K.H.: Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images. Inf. Fusion 29, 32–39 (2016)

    Article  Google Scholar 

  19. Hinton, G.E.; Osindero, S.; Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hinton, G.E.; Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. LeCun, Y.; Bengio, Y.; Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  22. Bengio, Y.: Learning deep architectures for AI. Foundations and trends\({\textregistered }\). Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Andrearczyk, V.; Whelan, P.F.: Deep learning for biomedical texture image analysis. In: Proceedings of the Irish Machine Vision and Image Processing Conference. Irish Pattern Recognition and Classification Society (IPRCS) (2017)

  24. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  25. Fukushima, K.; Miyake, S.: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Competition and Cooperation in Neural Nets, pp. 267–285. Springer, Berlin (1982)

  26. Ng, A.: Sparse autoencoder. CS294A Lect. Notes 72, 1–19 (2011)

    Google Scholar 

  27. Salakhutdinov, R.; Hinton, G.: Deep Boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448–455 (2009)

  28. Sutskever, I.; Hinton, G.E.; Taylor, G.W.: The recurrent temporal restricted boltzmann machine. In: Advances in Neural Information Processing Systems, pp. 1601–1608 (2009)

  29. Bengio, Y.; Courville, A.; Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  30. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  31. LeCun, Y.; Huang, F.J.; Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, vol. 2, pp. II–104. IEEE (2004)

  32. Zhang, X.; Liu, W.; Dundar, M.; Badve, S.; Zhang, S.: Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans. Med. Imaging 34(2), 496–506 (2015)

    Article  Google Scholar 

  33. Liu, W.; Wang, J., Ji, R.; Jiang, Y. G.; Chang, S.F.: Supervised hashing with kernels. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2074–2081. IEEE (2012)

  34. Liu, W.; Wang, J.; Kumar, S.; Chang, S. F.: Hashing with graphs. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1–8 (2011)

  35. Gong, Y.; Lazebnik, S.; Gordo, A.; Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)

    Article  Google Scholar 

  36. Wu, W.C.; Lin, Z.W.: SVD-based self-embedding image authentication scheme using quick response code features. J. Vis. Commun. Image Represent. 38, 18–28 (2016)

    Article  Google Scholar 

  37. Tang, Z.; Zhang, X.; Dai, X.; Yang, J.; Wu, T.: Robust image hash function using local color features. AEU Int. J. Electron. Commun. 67(8), 717–722 (2013)

    Article  Google Scholar 

  38. Qin, C.; Chang, C.C.; Tsou, P.L.: Robust image hashing using non-uniform sampling in discrete Fourier domain. Digit. Signal Proc. 23(2), 578–585 (2013)

    Article  MathSciNet  Google Scholar 

  39. Tang, Z.; Zhang, X.; Zhang, S.: Robust perceptual image hashing based on ring partition and NMF. IEEE Trans. Knowl. Data Eng. 26(3), 711–724 (2014)

    Article  Google Scholar 

  40. Basheer, I.A.; Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)

    Article  Google Scholar 

  41. Gao, X.; Li, W.; Loomes, M.; Wang, L.: A fused deep learning architecture for viewpoint classification of echocardiography. Inf. Fusion 36, 103–113 (2017)

    Article  Google Scholar 

  42. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

  43. Erdogan, S.Z.; Bilgin, T.T.: A data mining approach for fall detection by using k-nearest neighbour algorithm on wireless sensor network data. IET Commun. 6(18), 3281–3287 (2012)

    Article  Google Scholar 

  44. Furey, T.S.; Cristianini, N.; Duffy, N.; Bednarski, D.W.; Schummer, M.; Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Article  Google Scholar 

  45. Zhu, W.; Zeng, N.; Wang, N.: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. In: NESUG proceedings: health care and life sciences, Baltimore, Maryland, p. 19 (2010)

  46. Kumar, S.; Batish, A.; Singh, R.; Singh, T.P.: A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. J. Mech. Sci. Technol. 28(7), 2831–2844 (2014)

    Article  Google Scholar 

  47. Beale, H.M.; Hagan, M.T.; Demuth, H.B.: Neural Network Toolbox User’s Guide, pp. 3-2–3-30. The MathWorks, Inc., Novi (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Özyurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özyurt, F., Tuncer, T., Avci, E. et al. A Novel Liver Image Classification Method Using Perceptual Hash-Based Convolutional Neural Network. Arab J Sci Eng 44, 3173–3182 (2019). https://doi.org/10.1007/s13369-018-3454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3454-1

Keywords

Navigation