Skip to main content
Log in

Isolation, Screening and Optimization of Laccase-Producing Endophytic Fungi from Euphorbia milii

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The diverse group of endophytic fungi was isolated from Euphorbia milii, an ornamental plant, plated on lignin-based potato dextrose agar. The laccase-producing fungi were screened with alpha-naphthol. Initially, one variable at a time method was used for optimization of the low-cost media for laccase production, and the following parameters were used: carbon source (glucose), nitrogen source (sodium nitrate), pH (7), agitation (120 rpm), amount of mineral solution (2 mL), incubation period (\(28\,^{\circ }\hbox {C}\)) and duration (5 days). The efficiency of media for laccase production was statistically analysed. The optimized laccase production in response surface model was predicted using an artificial neural network with net regression value of 0.98. The final optimum media conditions for laccase production were as follows: carbon source (sodium potassium tartrate (1.4 g/L)), nitrogen source (sodium nitrate (1 g/L)), mineral solution (1 mL), inducer (copper sulphate 0.1 g/L and potassium chloride 0.5/L), pH (5), incubation (120 rpm), temperature (\(28\,^{\circ }\hbox {C}\)) and duration (7 days). The lowest laccase production in response surface model was 38.25 U/L and the highest laccase production was 122 U/L on the 7th day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandra, R.; Chowdhary, P.: Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ. Sci. Process. Impacts 17, 326–42 (2015). https://doi.org/10.1039/c4em00627e

    Article  Google Scholar 

  2. Salvachúa, D.; Karp, E.M.; Nimlos, C.T.; Vardon, D.R.; Beckham, G.T.: Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem. 17, 4951–4967 (2015). https://doi.org/10.1039/C5GC01165E

    Article  Google Scholar 

  3. Kremer, F.; Blank, L.M.; Jones, P.R.; Akhtar, M.K.: A comparison of the microbial production and combustion characteristics of three alcohol biofuels: ethanol, 1-butanol, and 1-octanol. Front. Bioeng. Biotechnol. 3, 112 (2015). https://doi.org/10.3389/fbioe.2015.00112

    Article  Google Scholar 

  4. Fillat, Ú.; Martín-sampedro, R.; Macaya-sanz, D.; Martín, J.A.; Ibarra, D.; Martínez, M.J.; Eugenio, M.E.: Screening of eucalyptus wood endophytes for laccase activity. Process Biochem. 51, 589–598 (2016). https://doi.org/10.1016/j.procbio.2016.02.006

    Article  Google Scholar 

  5. Shajahan, S.; Moorthy, I.G.; Sivakumar, N.; Selvakumar, G.: Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J. King Saud Univ. Sci. 29, 302–310 (2017). https://doi.org/10.1016/j.jksus.2016.08.001

    Article  Google Scholar 

  6. Bouacem, K.; Bouanane-Darenfed, A.; Boucherba, N.; Joseph, M.; Gagaoua, M.; Ben Hania, W.; Kecha, M.; Benallaoua, S.; Hacène, H.; Ollivier, B.; Fardeau, M.L.: Partial characterization of xylanase produced by caldicoprobacter algeriensis, a new thermophilic anaerobic bacterium isolated from an algerian hot spring. Appl. Biochem. Biotechnol. 174, 1969–1981 (2014). https://doi.org/10.1007/s12010-014-1153-2

    Article  Google Scholar 

  7. Teerapatsakul, C.; Chitradon, L.: Physiological regulation of an alkaline-resistant laccase produced by Perenniporia tephropora and efficiency in biotreatment of pulp mill effluent. Mycobiology 44, 260–268 (2016). https://doi.org/10.5941/MYCO.2016.44.4.260

    Article  Google Scholar 

  8. Gunne, M.; Urlacher, V.B.: Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLoS One 7, 1–8 (2012). https://doi.org/10.1371/journal.pone.0052360

    Article  Google Scholar 

  9. Shrestha, P.; Joshi, B.; Joshi, J.; Malla, R.; Sreerama, L.: Isolation and physicochemical characterization of laccase from Ganoderma lucidum-CDBT1 isolated from its native habitat in Nepal. Biomed. Res. Int. (2016). https://doi.org/10.1155/2016/3238909

  10. Sunitha, V.H.; Devi, D.N.; Srinivas, C.: Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J. Agric. Sci. 9, 1–9 (2013). https://doi.org/10.5829/idosi.wjas.2013.9.1.72148

    Google Scholar 

  11. Wang, J.W.; Wu, J.; Huang, W.Y.; Tan, R.X.: Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour. Technol. 97, 786–789 (2006). https://doi.org/10.1016/j.biortech.2005.03.025

    Article  Google Scholar 

  12. Chen, Y.; Peng, Y.; Dai, C.C.; Ju, Q.: Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari. Appl. Soil Ecol. 51, 102–110 (2011). https://doi.org/10.1016/j.apsoil.2011.09.004

    Article  Google Scholar 

  13. Sheik, S.; Chandrashekar, K.R.; Swaroop, K.; Somashekarappa, H.M.: Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int. Biodeterior. Biodegrad. 105, 21–29 (2015). https://doi.org/10.1016/j.ibiod.2015.08.006

    Article  Google Scholar 

  14. Mann, J.; Markham, J.L.; Peiris, P.; Nair, N.; Spooner-Hart, R.N.; Holford, P.: Screening and selection of fungi for bioremediation of olive mill wastewater. World J. Microbiol. Biotechnol. 26, 567–571 (2010). https://doi.org/10.1007/s11274-009-0200-6

    Article  Google Scholar 

  15. Li, P.; Wang, H.; Liu, G.; Li, X.; Yao, J.: The effect of carbon source succession on laccase activity in the co-culture process of Ganoderma lucidum and a yeast. Enzyme Microb. Technol. 48, 1–6 (2011). https://doi.org/10.1016/j.enzmictec.2010.07.005

    Article  Google Scholar 

  16. Poojary, H.; Mugeraya, G.: Optimization of critical medium components using response surface methodology for laccase production by Peniophora sp. hpF04. J. Microbiol. Res. Biotechnol. 2, 46–56 (2012)

    Google Scholar 

  17. Afreen, S.; Anwer, R.; Singh, R.K.; Fatma, T.: Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi J. Biol. Sci. (2016). https://doi.org/10.1016/j.sjbs.2016.01.015

  18. Bailey, M.J.; Adamitsch, B.; Rautio, J.; von Weymarn, N.; Saloheimo, M.: Use of a growth-associated control algorithm for efficient production of a heterologous laccase in Trichoderma reesei in fed-batch and continuous cultivation. Enzyme Microb. Technol. 41, 484–491 (2007). https://doi.org/10.1016/j.enzmictec.2007.04.002

    Article  Google Scholar 

  19. Dhillon, G.S.; Kaur, S.; Brar, S.K.: In-vitro decolorization of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int. Biodeterior. Biodegrad. 72, 67–75 (2012). https://doi.org/10.1016/j.ibiod.2012.05.012

    Article  Google Scholar 

  20. Hernández, C.A.; Sandoval, N.; Mallerman, J.; García-Pérez, J.A.; Farnet, A.-M.; Perraud-Gaime, I.; Alarcón, E.: Ethanol induction of laccase depends on nitrogen conditions of Pycnoporus sanguineus. Electron. J. Biotechnol. 18, 327–332 (2015). https://doi.org/10.1016/j.ejbt.2015.05.008

    Article  Google Scholar 

  21. Kumar, A.; Sharma, K.K.; Kumar, P.; Ramchiary, N.: Laccase isozymes from Ganoderma lucidum MDU-7: isolation, characterization, catalytic properties and differential role during oxidative stress. J. Mol. Catal. B Enzym. 113, 68–75 (2015). https://doi.org/10.1016/j.molcatb.2015.01.010

    Article  Google Scholar 

  22. Zhou, J.; Yang, T.; Mei, Y.; Kang, L.; Dai, C.; Zhou, J.; Yang, T.; Mei, Y.; Kang, L.; Dai, C.: Laccase production by Phomopsis liquidambari B3 cultured with food waste and wheat straw as the main nitrogen and carbon sources. J. Air Waste Manag. Assoc. 64, 1154–1163 (2014). https://doi.org/10.1080/10962247.2014.930077

    Article  Google Scholar 

  23. Gama, R.; Van Dyk, J.S.; Burton, M.H.; Pletschke, B.I.: Using an artificial neural network to predict the optimal conditions for enzymatic hydrolysis of apple pomace. 3 Biotech 7, 1–10 (2017). https://doi.org/10.1007/s13205-017-0754-1

    Article  Google Scholar 

  24. Amini, Z.; Ong, H.C.; Harrison, M.D.; Kusumo, F.; Mazaheri, H.; Ilham, Z.: Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers. Manag. 132, 82–90 (2017). https://doi.org/10.1016/j.enconman.2016.11.017

    Article  Google Scholar 

  25. Chiranjeevi, P.V.; Pandian, M.R.; Sathish, T.: Integration of artificial neural network modeling and genetic algorithm approach for enrichment of laccase production in solid state fermentation by Pleurotus ostreatus. Bioresources 9, 2459–2470 (2014)

    Article  Google Scholar 

  26. Das, S.; Bhattacharya, A.; Haldar, S.; Ganguly, A.; Gu, S.; Ting, Y.P.; Chatterjee, P.K.: Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 3, 17–28 (2015). https://doi.org/10.1016/j.susmat.2015.01.001

    Google Scholar 

  27. Balabin, R.M.; Lomakina, E.I.; Safieva, R.Z.: Neural network (ANN) approach to biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy. Fuel 90, 2007–2015 (2011). https://doi.org/10.1016/j.fuel.2010.11.038

    Article  Google Scholar 

  28. Zhang, Y.; Xu, J.; Yuan, Z.; Xu, H.; Yu, Q.: Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresour. Technol. 101, 3153–3158 (2010). https://doi.org/10.1016/j.biortech.2009.12.080

    Article  Google Scholar 

  29. Sriprapat, W.; Thiravetyan, P.: Efficacy of ornamental plants for benzene removal from contaminated air and water: effect of plant associated bacteria. Int. Biodeterior. Biodegrad. 113, 262–268 (2016). https://doi.org/10.1016/j.ibiod.2016.03.001

    Article  Google Scholar 

  30. Siswanto, D.; Thiravetyan, P.: Improvement of trimethylamine uptake by Euphorbia milii: effect of inoculated bacteria. J. Trop. Life Sci. 6, 123–130 (2016). https://doi.org/10.11594/jtls.06.02.11

    Article  Google Scholar 

  31. Siswanto, D.; Chhon, Y.; Thiravetyan, P.: Uptake and degradation of trimethylamine by Euphorbia milii. Environ. Sci. Pollut. Res. 23, 17067–17076 (2016). https://doi.org/10.1007/s11356-016-6874-z

    Article  Google Scholar 

  32. Khaksar, G.; Siswanto, D.; Treesubsuntorn, C.; Thiravetyan, P.: Euphorbia milii–endophytic bacteria interactions affect hormonal levels of the native host differently under various airborne pollutants. Mol. Plant Microbe Interact. 29, 663–673 (2016)

    Article  Google Scholar 

  33. Khaksar, G.; Treesubsuntorn, C.; Thiravetyan, P.: Euphorbia milii–native bacteria interactions under airborne formaldehyde stress: effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels. Plant Physiol. Biochem. 111, 284–294 (2017). https://doi.org/10.1016/j.plaphy.2016.12.011

    Article  Google Scholar 

  34. Kumar, L.; Ranjan, R.; Sabumon, P.C.: Development of an ecologically sustainable wastewater treatment system. Water Sci. Technol. 58, 7–12 (2008). https://doi.org/10.2166/wst.2008.341

    Article  Google Scholar 

  35. Ramalingam, C.; Suniti, S.: Waste water reuse? extension approach to depleting water resources. J. Phytol. 2, 44–49 (2010)

    Google Scholar 

  36. Sidhu, A.K.; Agrawal, S.B.; Sable, V.S.; Patil, S.N.; Gaikwad, V.B.: Isolation of Colletotrichum gloeosporioides gr., a novel endophytic laccase producing fungus from the leaves of a medicinal plant, Piper betle. Int. J. Sci. Eng. Res. 5, 1087–1096 (2014)

    Google Scholar 

  37. Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-Ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; Sharma, A.; Kumar, R.; Sharma, R.K.; Qazi, G.N.: The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol. 122, 494–510 (2006). https://doi.org/10.1016/j.jbiotec.2005.10.015

    Article  Google Scholar 

  38. Subramanian, K.; Shanmugasundaram, K.; Arts, K.: Isolation of endophytic fungi from Azadirachta indica and preliminary screening for laccase enzyme. World J. Pharm. Pharm. Sci. 3, 1260–1266 (2014)

    Google Scholar 

  39. More, S.S.; Renuka, P.S.; Malini, S.: Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res. (2011). https://doi.org/10.4061/2011/248735

    Google Scholar 

  40. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K.: MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018). https://doi.org/10.1093/molbev/msy096

    Article  Google Scholar 

  41. Cavazzuti, M.: Optimization Methods: From Theory to Design (2013)

  42. Manwar, J.; Mahadik, K.; Paradkar, A.: Plackett–Burman design: a statistical method for the optimization of fermentation process for the yeast Saccharomyces cerevisiae isolated from the flowers of Woodfordia fruticosa. Ferment. Technol. 01, 1–6 (2012). https://doi.org/10.4172/2167-7972.1000109

    Google Scholar 

  43. Mathur, G.; Mathur, A.; Sharma, B.M.; Chauhan, R.S.: Enhanced production of laccase from Coriolus sp. using Plackett–Burman design. J. Pharm. Res. 6, 151–154 (2013). https://doi.org/10.1016/j.jopr.2012.11.031

    Google Scholar 

  44. Yang, F.; Long, L.; Sun, X.; Wu, H.; Li, T.; Xiang, W.: Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar. Drugs 12, 1245–1257 (2014). https://doi.org/10.3390/md12031245

    Article  Google Scholar 

  45. Lee, K.-M.; Kalyani, D.; Tiwari, M.K.; Kim, T.-S.; Dhiman, S.S.; Lee, J.-K.; Kim, I.-W.: Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123, 636–45 (2012). https://doi.org/10.1016/j.biortech.2012.07.066

    Article  Google Scholar 

  46. Jin, X.; Ning, Y.: Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. J. Hazard. Mater. 262, 870–7 (2013). https://doi.org/10.1016/j.jhazmat.2013.09.024

    Article  Google Scholar 

  47. Arora, D.S.; Gill, P.K.: Effects of various media and supplements on laccase production by some white rot fungi. Bioresour. Technol. 77, 89–91 (2001). https://doi.org/10.1016/S0960-8524(00)00114-0

    Article  Google Scholar 

  48. Zhu, C.; Bao, G.; Huang, S.: Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper. Biotechnol. Biotechnol. Equip. 30, 270–276 (2016). https://doi.org/10.1080/13102818.2015.1135081

    Article  Google Scholar 

  49. Nor, N.M.; Mohamed, M.S.; Loh, T.C.; Foo, H.L.; Rahim, R.A.; Tan, J.S.; Mohamad, R.: Comparative analyses on medium optimization using one-factor-at-a-time, response surface methodology, and artificial neural network for lysine–methionine biosynthesis by Pediococcus pentosaceus RF-1. Biotechnol. Biotechnol. Equip. 31, 935–947 (2017). https://doi.org/10.1080/13102818.2017.1335177

    Article  Google Scholar 

  50. Novotný, Č.; Cajthaml, T.; Svobodová, K.; Šušla, M.; Šašek, V.: Irpex lacteus, a white-rot fungus with biotechnological potential: review. Folia Microbiol. (Praha) 54, 375–390 (2009). https://doi.org/10.1007/s12223-009-0053-2

    Article  Google Scholar 

  51. Svobodová, K.; Majcherczyk, A.; Novotný, Č.; Kües, U.: Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Bioresour. Technol. 99, 463–471 (2008). https://doi.org/10.1016/j.biortech.2007.01.019

    Article  Google Scholar 

  52. Martín-Sampedro, R.; Fillat, Ú.; Ibarra, D.; Eugenio, M.E.: Towards the improvement of Eucalyptus globulus chemical and mechanical pulping using endophytic fungi. Int. Biodeterior. Biodegrad. 105, 120–126 (2015). https://doi.org/10.1016/j.ibiod.2015.08.023

    Article  Google Scholar 

  53. Sun, J.; Guo, N.; Niu, L.; Wang, Q.; Zang, Y.; Zu, Y.; Fu, Y.-J.: Production of laccase by a new Myrothecium verrucaria MD-R-16 isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and its application on dye decolorization. Molecules 22, 673 (2017). https://doi.org/10.3390/molecules22040673

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank VIT University for providing ‘VIT SEED GRANT’ for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mythili Sathiavelu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, A., Ramakrishna, N., Arunachalam, S. et al. Isolation, Screening and Optimization of Laccase-Producing Endophytic Fungi from Euphorbia milii. Arab J Sci Eng 44, 51–64 (2019). https://doi.org/10.1007/s13369-018-3431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3431-8

Keywords

Navigation