Skip to main content
Log in

DFT Study of the Interaction of Trialkylamines with \(\hbox {Ni}_{4}\)-Clusters

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research studies binding of trialkylamine derivatives to the multiplicity optimized \(\hbox {Ni}_{4}\)-clusters using theoretical approaches. The goal is to understand the interaction behavior on the metal surface and provide some key points important to the corrosion problems. The results show that trialkylamine derivatives are able to establish N–Ni bond through either short or long diagonal of \(\hbox {Ni}_{4}\)-cluster. Of the studied triethylamine, tripropylamine, and tributylamine, the last derivative in series shows highest binding energy. TAAs/\(\hbox {Ni}_{4}\)-cluster complexes with \(M=5\) show special electronic charge transfer that stabilizes the complex. According to this analysis for natural charges, therefore, the nature of metal–ligand (e.g., N–Ni) interactions that underlay TAAs/\(\hbox {Ni}_{4}\)-cluster complexes can be elucidated. Possible correlation between interaction strength, polarizability, nitrogen’s atomic charge and the orbitals energy gaps is also investigated. The results of natural bond orbital analysis explore the strong charge transfer from lone pair of nitrogen atom to \(\sigma ^{*}\) and \(n^{*}\) orbitals of the clusters. The trialkylamines in this work are weaker corrosion inhibitor on the small nickel cluster than the previously studied aromatic nitrogen containing compounds like pyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Longoni G.; Femoni C.; Iapalucci M C.; Zanello P.: in Metal Clusters in Chemistry P. Braunstein, L. A. Oro, P. R. Raithby (eds.). Wiley-VCH, Wein-heim, 1137 pp (1999)

  2. Gafner, S.; Redel, L.; Gafner, Y.Y.: Molecular-dynamics simulation of the heat capacity for nickel and copper clusters: shape and size effects. J. Exp. Theor. Phys 114, 428 (2012)

    Article  Google Scholar 

  3. Petkov, P.S.; Vayssilov, G.N.; Ger, S.K.; Rçsch, N.: Influence of single impurity atoms on the structure, electronic, and magnetic properties of Ni\(_5\) clusters. J. Phys. Chem. A 111, 2067 (2007)

    Article  Google Scholar 

  4. Chikhaoui, A.; Haddab, K.; Bouarab, S.; Vega, A.: Density functional study of the structures and electronic properties of nitrogen-doped Ni\(_n\) clusters, \(n = 1{-}10\). J. Phys. Chem. A 115, 13997 (2011)

    Article  Google Scholar 

  5. Hristova, E.; Dong, Y.; Grigoryan, V.G.; Springborg, M.: Structural and energetic properties of Ni–Cu bimetallic clusters. J. Phys. Chem. A 112, 7905 (2008)

    Article  Google Scholar 

  6. Venkataramanan, N.S.; Sahara, R.; Mizuseki, H.; Kawazoe, Y.: Titanium-doped nickel clusters TiNi\(_n\) (\(n = 1{-}12\)): geometry, electronic, magnetic, and hydrogen adsorption properties. J. Phys. Chem. A 114, 5049 (2010)

    Article  Google Scholar 

  7. Gleiter, H.: Materials with ultrafine microstructures: retrospective and perspective. Nanostruct. Mater. 1, 1 (1992)

    Article  Google Scholar 

  8. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  9. Zhao, X.; Tapec-Dytioco, R.; Tan, W.: Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125, 11474 (2003)

    Article  Google Scholar 

  10. Gozzi, D.; Latini, A.; Capannelli, G.; Canepa, F.; Nappletano, M.; Cimberle, M.R.; Tropeano, M.: Synthesis and magnetic characterization of Ni nanoparticles and Ni nanoparticles in multiwalled carbon nanotubes. J. Alloys Compd. 419, 32 (2006)

    Article  Google Scholar 

  11. Zuzana, M.; Alessandra, R.; Lise, F.; Maria, D.: Safety assessment of nanoparticles cytotoxicity and genotoxicity of metal nanoparticles in vitro. J. Biomed. Nanotechnol. 7, 20 (2011)

    Article  Google Scholar 

  12. Xu, P.P.; Li, J.Y.; Chen, B.A.; Wang, X.M.; Cai, X.H.; Jiang, H.; Wang, C.L.; Zhang, H.J.: The real-time neurotoxicity analysis of \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles combined with daunorubicin for rat brain in vivo. J. Biomed. Nanotechnol. 8, 417 (2012)

    Article  Google Scholar 

  13. Guo, D.; Wu, C.; Li, X.; Jiang, H.; Wang, X.; Chen, B.: In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J. Nanosci. Nanotech. 8, 2301 (2008)

    Article  Google Scholar 

  14. Guo, D.; Wu, C.H.; Wang, X.M.; Chen, B.A.: Electrochemical study of the effect of functionalized nickel nanoparticles on cellular uptake of leukemia cancer cells in vitro Chin. Chem. Lett. 19, 577 (2008)

    Google Scholar 

  15. Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.: The structure of small nickel clusters. I. \(\text{ Ni }_{3}\)-\(\text{ Ni }_{1}\). J. Chem. Phys. 100, 7206 (1994)

    Article  Google Scholar 

  16. Raghavan, K.; Stave, M.S.; DePristo, A.E.: Ni clusters: structures and reactivity with D\(_{2}\). J. Chem. Phys. 91, 1904 (1989)

    Article  Google Scholar 

  17. Goel, S.; Masunov, A.E.: Density functional theory study of small nickel clusters. J. Mol. Model. 18, 783 (2012)

    Article  Google Scholar 

  18. Nayak, S.K.; Khanna, S.N.; Rao, B.K.; Jena, P.: Physics of nickel clusters:? energetics and equilibrium geometries. J. Phys. Chem. A 101(1072), 4223 (1997)

    Google Scholar 

  19. Khaled, K.F.; Abdel-Shafi, N.S.: Quantitative structure and activity relationship modeling study of corrosion inhibitors: genetic function approximation and molecular dynamics simulation methods. Int. J. Electrochem. Sci. 6, 4077 (2011)

    Google Scholar 

  20. Bastidas, J.M.; Polo, J.L.; Cano, E.; Torres, C.L.: Trybutylamine as. corrosion inhibitor for mild steel in hydrochloric acid. J. Mater. Sci. 35, 2637 (2000)

    Article  Google Scholar 

  21. Ghatee, M.H.; Pakdel, L.: Pyridine adsorption on small Nin-cluster (\(n=5 2,3,4\)): a study of geometry and electronic structure. Int. J. Quantum Chem. 113, 1549 (2013)

    Article  Google Scholar 

  22. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)

    Article  Google Scholar 

  23. Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)

    Article  Google Scholar 

  24. Parr, R.G.; Yang, W.: Density Functional Theory of Atoms and Molecules. New York, Oxford University Press (1989)

    Google Scholar 

  25. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993)

    Article  Google Scholar 

  26. Hay, P.J.; Wadt, W.R.: ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270 (1985)

    Article  Google Scholar 

  27. Wadt, W.R.; Hay, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284 (1985)

    Article  Google Scholar 

  28. Hay, P.J.; Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299 (1985)

    Article  Google Scholar 

  29. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A. Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.;Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; . Zakrzewski, V.G.;Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A,D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.;Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople J.A.: Gaussian 03 Revision B.04. GaussianInc, Pittsburgh PA (2003)

  30. Boys, S.F.; Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553 (1970)

    Article  Google Scholar 

  31. Reed, E.; Curtiss, L.A.; Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

  32. GaussView.: Gaussian Inc., Pittsburgh, PA (2003)

  33. Nakazawa, T.; Igarashi, T.; Tsuru, T.; Kaji, Y.: Ab initio calculations of Fe–Ni clusters. Comput. Mater. Sci. 46, 367 (2009)

    Article  Google Scholar 

  34. Gutsev, G.L.; Khanna, S.N.; Jena, P.: Unambiguous assignment of the ground state of a nearly degenerate cluster. Phys. Rev. B 62, 1604 (2000)

    Article  Google Scholar 

  35. Chretien, S.; Salahub, D.R.: Kohn-Sham density-functional study of low-lying states of the iron clusters Fen. +/ Fen/ Fen. Phys. Rev. B 66, 155425 (2002)

    Article  Google Scholar 

  36. Gutsev, G.L.; Jr, B.C.W.: Electron affinities, ionization energies, and fragmentation energies of Fe\(_{n}\) clusters (\(n = 2{-}6\)):? a density functional theory study. J. Phys. Chem. A 107, 7013 (2003)

    Article  Google Scholar 

  37. Gutsev, G.L.; Mochena, M.D.; Johnson, E.; Jr, B.C.W.: Dissociative and associative attachment of NO to iron clusters. J. Chem. Phys. 125, 194312 (2006)

    Article  Google Scholar 

  38. Ichihashi T.; Igarashi H.; Sonoda N.: US Patent 5 792 731 (1998)

  39. Asami T.: US Patent App. 12/450, 976 (2008)

  40. Adkins, R.L.; Slack, W.E.: US Patent 5 874 623 (1999)

  41. Shieh, W.-C.; Dell, S.; Repič, O.: Nucleophilic catalysis with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) for the esterification of carboxylic acids with dimethyl carbonate. J. Org. Chem. 67, 2188 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Pakdel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 1297 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakdel, L., Sedghamiz, T. & Azami, S.M. DFT Study of the Interaction of Trialkylamines with \(\hbox {Ni}_{4}\)-Clusters. Arab J Sci Eng 44, 199–208 (2019). https://doi.org/10.1007/s13369-018-3420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3420-y

Keywords

Navigation