Skip to main content
Log in

Modeling, Optimization and Kinetic Study for Photocatalytic Treatment of Ornidazole Using Slurry and Fixed-Bed Approach

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ornidazole is a well-known antibiotic which has been widely used for both human and veterinary treatments. The present study investigated the degradation of ornidazole using \(\hbox {TiO}_{2}\) as a photocatalyst with UV light irradiation. Artificial neural network (ANN) was applied for the modeling of the photocatalytic degradation of ornidazole. In slurry mode, the input parameters were pH, ornidazole concentration, \(\hbox {TiO}_{2}\) dose, treatment time and % degradation as output. Parametric optimization was performed by Box–Behnken design (BBD). At optimum conditions the % degradation was found to be 84.02, 82.63 and 77.7% as predicted by BBD, simulated by ANN and by experimental run respectively. The results showed that the predictions agreed with the experimental results. The degradation of ornidazole follows the second-order reaction kinetics. For fixed-bed studies, \(\hbox {TiO}_{2}\) immobilized spherical cement beads were used to carry out the degradation of ornidazole at laboratory scale as well as at pilot scale with volume handling of 5 L. The catalyst immobilized beads were successfully recycled for at-least 40 runs without any significant reduction in the degradation efficiency of ornidazole. The activity as well as stability of immobilized catalyst over the surface of beads was confirmed through SEM/EDS, XRD and DRS analysis. Bioassay test was conducted for the safe disposal of treated wastewater and was found to be non-toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dinh, Q.T.; Alliot, F.; Moreau-Guigon, E.; Eurin, J.J.; Chevreuil, M.; Labadie, P.: Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta 85, 1238–1245 (2011). https://doi.org/10.1016/j.talanta.2011.05.013

    Article  Google Scholar 

  2. Yang, L.; Yu, L.E.; Ray, M.B.: Degradation of paracetamol in aqueous solutions by \(\text{ TiO }_{2}\) photocatalysis. Water Res. 42, 3480–3488 (2008). https://doi.org/10.1016/j.watres.2008.04.023

    Article  Google Scholar 

  3. Braz, F.; Silva, M.; Silva, F.: Photocatalytic degradation of ibuprofen using \(\text{ TiO }_{2}\) and ecotoxicological assessment of degradation intermediates against Daphnia similis. J. Environ. Prot. (Irvine, Calif) 5, 620–626 (2014)

    Article  Google Scholar 

  4. Kümmerer, K.: Chemosphere antibiotics in the aquatic environment—a review—Part II. Chemosphere 75, 435–441 (2009). https://doi.org/10.1016/j.chemosphere.2008.12.006

    Article  Google Scholar 

  5. Klamerth, N.; Rizzo, L.; Malato, S.; Maldonado, M.I.; Aguera, a; Fernandez-Alba, A.R.: Degradation of fifteen emerging contaminants at \(\upmu \text{ g }~\text{ L }^{-1}\) initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Res. 44, 545–554 (2010). https://doi.org/10.1016/j.watres.2009.09.059

    Article  Google Scholar 

  6. Sang, Z.; Jiang, Y.; Tsoi, Y.K.; Leung, K.S.Y.: Evaluating the environmental impact of artificial sweeteners: a study of their distributions, photodegradation and toxicities. Water Res. 52, 260–264 (2014). https://doi.org/10.1016/j.watres.2013.11.002

    Article  Google Scholar 

  7. Joss, A.; Keller, E.; Alder, A.C.; Göbel, A.; McArdell, C.S.; Ternes, T.; Siegrist, H.: Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 39, 3139–3152 (2005). https://doi.org/10.1016/j.watres.2005.05.031

    Article  Google Scholar 

  8. Teixeira, S.; Gurke, R.; Eckert, H.; Kuhn, K.; Fauler, J.; Cuniberti, G.: Photocatalytic degradation of pharmaceuticals present in conventional treated wastewater by nanoparticle suspensions. J. Environ. Chem. Eng. 4, 287–292 (2016). https://doi.org/10.1016/j.jece.2015.10.045

    Article  Google Scholar 

  9. Ziemiańska, J.; Adamek, E.; Sobczak, A.; Lipska, I.; Makowski, A.; Baran, W.: The study of photocatalytic degradation of sulfonamides applied to municipal wastewater. Physicochem. Probl. Miner. Process. 45, 127–140 (2010)

    Google Scholar 

  10. Giri, R.R.; Ozaki, H.; Ota, S.; Takanami, R.; Taniguchi, S.: Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques. Int. J. Environ. Sci. Technol. 7, 251–260 (2010). https://doi.org/10.1007/BF03326135

    Article  Google Scholar 

  11. Kim, I.; Tanaka, H.: Photodegradation characteristics of PPCPs in water with UV treatment. Environ. Int. 35, 793–802 (2009). https://doi.org/10.1016/j.envint.2009.01.003

    Article  Google Scholar 

  12. Fujishima, A.; Rao, T.N.; Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1, 1–21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2

    Article  Google Scholar 

  13. Mills, A.; Le Hunte, S.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108, 1–35 (1997). https://doi.org/10.1016/S1010-6030(97)00118-4

    Article  Google Scholar 

  14. Fox, M.A.; Dulay, M.T.: Heterogeneous photocatalysis. Chem. Rev. 93, 341–357 (1993). https://doi.org/10.1021/cr00017a016

    Article  Google Scholar 

  15. Palmisano, G.; García-López, E.; Marcì, G.; Loddo, V.; Yurdakal, S.; Augugliaro, V.; Palmisano, L.: Advances in selective conversions by heterogeneous photocatalysis. Chem. Commun. (Cambr) 46, 7074–89 (2010). https://doi.org/10.1039/c0cc02087g

    Article  Google Scholar 

  16. Fujishima, A.; Zhang, X.; Tryk, D.A.: TiO\(_{2}\) Photocatalysis and Related Surface Phenomena. Elsevier, Amsterdam (2008)

    Google Scholar 

  17. ArunaKumari, M.L.; Devi, L.G.: New insights into the origin of the visible light photocatalytic activity of Fe (III) porphyrin surface anchored \(\text{ TiO }_{2}\). Environ. Sci. 1, 177–187 (2015). https://doi.org/10.1039/C4EW00024B

    Article  Google Scholar 

  18. Zheng, Q.; Shen, H.; Shuai, D.: Emerging investigators series: advances and environmental science challenges of graphitic carbon nitride as a visible. Environ. Sci. Water Res. Technol. 3, 982 (2017). https://doi.org/10.1039/C7EW00159B

    Article  Google Scholar 

  19. Pistkova, V.; Tasbihi, M.; Vavrova, M.; Stangar, U.L.: Photocatalytic degradation of \(\beta \)-blockers by using immobilized titania/silica on glass slides. J. Photochem. Photobiol. A Chem. 305, 19–28 (2015). https://doi.org/10.1016/j.jphotochem.2015.02.014

    Article  Google Scholar 

  20. Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Aguera, a; Puma, G.L.; Malato, S.: Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low \(\text{ TiO }_{2}\) concentrations. J. Hazard. Mater. 211–212, 131–137 (2012). https://doi.org/10.1016/j.jhazmat.2011.09.008

    Article  Google Scholar 

  21. Sarkar, S.; Chakraborty, S.; Bhattacharjee, C.: Photocatalytic degradation of pharmaceutical wastes by alginate supported \(\text{ TiO }_{2}\) nanoparticles in packed bed photo reactor (PBPR). Ecotoxicol. Environ. Saf. 121, 263–270 (2015). https://doi.org/10.1016/j.ecoenv.2015.02.035

    Article  Google Scholar 

  22. Zhao, J.; Yao, B.; He, Q.; Zhang, T.: Preparation and properties of visible light responsive \(\text{ Y }^{3+}\) doped \(\text{ Bi }_{5}\text{ Nb }_{3}\text{ O }_{15}\) photocatalysts for Ornidazole decomposition. J. Hazard. Mater. 229–230, 151–158 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.088

    Article  Google Scholar 

  23. Fukahori, S.; Fujiwara, T.: Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using \(\text{ TiO }_{2}\). J. Environ. Manag. 157, 103–110 (2015). https://doi.org/10.1016/j.jenvman.2015.04.002

    Article  Google Scholar 

  24. Jallouli, N.; Elghniji, K.; Trabelsi, H.; Ksibi, M.: Photocatalytic degradation of paracetamol on \(\text{ TiO }_{2}\)nanoparticles and \(\text{ TiO }_{2}\)/cellulosic fiber under UV and sunlight irradiation. Arab. J. Chem. 10, S3640–S3645 (2017). https://doi.org/10.1016/j.arabjc.2014.03.014

    Article  Google Scholar 

  25. Rosu, M.C.; Coros, M.; Pogacean, F.; Magerusan, L.; Socaci, C.; Turza, A.; Pruneanu, S.: Azo dyes degradation using \(\text{ TiO }_{2}\)-Pt/graphene oxide and \(\text{ TiO }_{2}\)-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sci. 70, 13–20 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.05.013

    Article  Google Scholar 

  26. Talwar, S.; Sangal, V.K.; Verma, A.: Feasibility of using combined \(\text{ TiO }_{2}\) photocatalysis and RBC process for the treatment of real pharmaceutical wastewater. J. Photochem. Photobiol. A Chem. 353, 119 (2018). https://doi.org/10.1016/j.jphotochem.2017.11.013

    Article  Google Scholar 

  27. Aleboyeh, A.; Moussa, Y.; Aleboyeh, H.: The effect of operational parameters on UV/\(\text{ H }_{2}\text{ O }_{2}\) decolourisation of Acid Blue 74. Dye Pigment. 66, 129–134 (2005). https://doi.org/10.1016/j.dyepig.2004.09.008

    Article  Google Scholar 

  28. Verma, A.; Prakash, N.T.; Toor, A.P.: An efficient \(\text{ TiO }_{2}\) coated immobilized system for the degradation studies of herbicide isoproturon: durability studies. Chemosphere 109, 7–13 (2014). https://doi.org/10.1016/j.chemosphere.2014.02.051

    Article  Google Scholar 

  29. Garg, A.; Sangal, V.K.; Bajpai, P.K.: Decolorization and degradation of reactive black 5 dye by photocatalysis: modeling, optimization and kinetic study. Desalin. Water Treat. 3994, 1 (2015). https://doi.org/10.1080/19443994.2015.1086697

    Article  Google Scholar 

  30. Valgas, C.; De Souza, S.M.; Smânia, E.F.A.; Artur, S.J.: Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369–380 (2007). https://doi.org/10.1590/S1517-83822007000200034

    Article  Google Scholar 

  31. Elmolla, E.S.; Chaudhuri, M.; Eltoukhy, M.M.: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J. Hazard. Mater. 179, 127–134 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.068

    Article  Google Scholar 

  32. Zamaniyan, A.; Joda, F.; Behroozsarand, A.; Ebrahimi, H.: Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant. Int. J. Hydrog. Energy 38, 6289–6297 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.136

    Article  Google Scholar 

  33. Kaur, P.; Sangal, V.K.; Kushwaha, J.P.: Modeling and evaluation of electro-oxidation of dye wastewater using artificial neural networks. RSC Adv. 5, 34663–34671 (2015). https://doi.org/10.1039/c4ra14160a

    Article  Google Scholar 

  34. Bhatti, M.S.; Kapoor, D.; Kalia, R.K.; Reddy, A.S.; Thukral, A.K.: RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: multi objective optimization using genetic algorithm approach. Desalination 274, 74–80 (2011). https://doi.org/10.1016/j.desal.2011.01.083

    Article  Google Scholar 

  35. Agatonovic-Kustrin, S.; Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000). https://doi.org/10.1016/S0731-7085(99)00272-1

    Article  Google Scholar 

  36. Pareek, V.; Brungs, M.; Adesina, a; Sharma, R.: Artificial neural network modeling of a multiphase photodegradation system. J. Photochem. Photobiol. A Chem. 149, 139–146 (2002). https://doi.org/10.1016/S1010-6030(01)00640-2

    Article  Google Scholar 

  37. Sangal, V.K.; Kumar, V.; Mishra, I.M.: Process parametric optimization of a divided wall distillation column. Chem. Eng. Commun. 201, 37–41 (2014). https://doi.org/10.1080/00986445.2012.762625

    Article  Google Scholar 

  38. Rastegar, M.; Shadbad, K.R.; Khataee, A.R.; Pourrajab, R.: Optimization of photocatalytic degradation of sulphonated diazo dye C.I. reactive green 19 using ceramic-coated TiO\(_{2}\) nanoparticles. Environ. Technol. 33, 995–1003 (2012). https://doi.org/10.1080/09593330.2011.604859

    Article  Google Scholar 

  39. Singh, P.; Mittal, R.; Sharma, G.C.; Singh, S.; Singh, A.: Ornidazole: comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol. 30, 123–184 (2003)

    Article  Google Scholar 

  40. Saggioro, E.M.; Oliveira, A.S.; Pavesi, T.; Maia, C.G.; Ferreira, L.F.V.; Moreira, J.C.: Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16, 10370–10386 (2011). https://doi.org/10.3390/molecules161210370

    Article  Google Scholar 

  41. Rizzo, L.: Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res. 45, 4311–4340 (2011). https://doi.org/10.1016/j.watres.2011.05.035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kumar Sangal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talwar, S., Sangal, V.K., Verma, A. et al. Modeling, Optimization and Kinetic Study for Photocatalytic Treatment of Ornidazole Using Slurry and Fixed-Bed Approach. Arab J Sci Eng 43, 6191–6202 (2018). https://doi.org/10.1007/s13369-018-3388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3388-7

Keywords

Navigation