Skip to main content
Log in

Hydromorphological Numerical Model of the Local Scour Process Around Bridge Piers

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the simulation and prediction of scour processes, both hydrodynamically and morphologically, around vertical and inclined piers. A new version of FLOW-3D v. 11.2, including three sediment transport equations, was extensively used for estimating the scour around the pier. The results of the model in terms of water surface, flow velocity, bed shear stress and scour depth were effectively compared with several sets of the experimental and numerical data in the literature. The model provided an accurate estimation of water surface, flow velocity and bed shear stress. However, the results for the vertical velocity upstream of the pier were underestimated. The predictive capabilities of the model were mainly dependent on the pier shape and inclined direction. The downflow, stream-wise velocity, shear stress and local scour depth were significantly reduced at the inclination angle of the circular pier downstream. However, they were nearly equal to those of an inclined perpendicular circular pier. This study strongly demonstrates that a 3D hydromorphological model can be effectively used to predict the scour depth around piers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

Pier diameter

\(d_\mathrm{s}\) :

Equilibrium scour depth

\(D_{50}\) :

Mean sediment size

\(g_{i}\) :

Gravitational acceleration in ith direction

k :

von Karman constant

P :

Total pressure

\(P_{o}\) :

Upstream undisturbed static pressure

\(S_{o}\) :

Longitudinal slope of flume

t :

Time

U :

Average flow velocity

\(u_\mathrm{p}\) :

Mean flow velocity at point p

\(u_{*}\) :

Shear velocity

\(V_{x}\) :

Local flow velocity in x-direction

\(V_{y}\) :

Local flow velocity in y-direction

\(V_{z}\) :

Local flow velocity in z-direction

x :

Distance in x-direction

h :

Flow depth

y :

Distance in y-direction

\(Z+\) :

Wall unit distance

z :

Distance in z-direction

\(z_\mathrm{p}\) :

Distance from point p to wall

q :

Volume fraction of qth phase in control volume

\(\Delta B\) :

Roughness function

\(\delta \) :

Kronecker delta function

\(pu_{i}\,u_j \) :

Turbulence stresses

Equ.:

Equilibrium scour depth

References

  1. Khodabakhshi, A.; Farhadi, A.: Experimental study on effect of slot on bridge pier structures. Appl. Res. J. 2, 238–243 (2016)

    Google Scholar 

  2. Ismael, A.; Gunal, M.; Hussein, H.: Effect of bridge pier position on scour reduction according to flow direction. Arab. J. Sci. Eng. (2015). https://doi.org/10.1007/s13369-015-1625-x

  3. Das, S.; Das, R.; Mazumdar, A.: Comparison of local scour characteristics around two eccentric piers of different shapes. Arab. J. Sci. Eng. (2015). https://doi.org/10.1007/s13369-015-1817-4

  4. Khan, M.; Tufail, M.; Ajmal, M.; Ul, Z.; Kim, T.: Experimental analysis of the scour pattern modeling of scour depth around bridge piers. Arab. J. Sci. Eng. (2017). https://doi.org/10.1007/s13369-017-2599-7

  5. Nelson, J.M.; Mcdonald, R.R.; Shimizu, Y.; Kimura, I.; Nabi, M.; Asahi, K.: Modelling flow, sediment transport and morphodynamics in rivers, chap 18. In: Kondolf, G.M; Piégay, H. (eds.) Tools in Fluvial Geomorphology, 2nd edn. Wiley (2016)

  6. Alemi, M.; Maia, R.: Numerical simulation of the flow and local scour process around single and complex bridge piers. Int. J. Civ. Eng. (2017). https://doi.org/10.1007/s40999-016-0137-8

  7. Ehteram, M.; Mahdavi, A.: Numerical modeling of scour depth at side piers of the bridge. J. Comput. Appl. Math. 280, 68–79 (2015). https://doi.org/10.1016/j.cam.2014.11.039

    Article  MathSciNet  MATH  Google Scholar 

  8. Mohamed, H.I.: Numerical simulation of flow and local scour at two submerged-emergent tandem. J. Eng. Sci. Assiut Univ. 41, 1–19 (2013)

    Google Scholar 

  9. Zhang, Z.; Shi, B.: Numerical simulation of local scour around underwater pipeline based on FLUENT software. J. Appl. Fluid Mech. 9, 711–718 (2016)

    Article  Google Scholar 

  10. Duan, J.G.: Two-dimensional model simulation of flow field around bridge piers. EWRI 2005, 1–12 (2005)

    Google Scholar 

  11. Nekoufar, K.; Pouladi, F.: Analyzing the performance of collar and slot in reduction of scouring the bridge piers with software SSIIM. Acta Tech. Corviniensis Bull. Eng. 7(2), 93 (2014)

    Google Scholar 

  12. Villaret, C.; Hervouet, J.; Kopmann, R.; Merkel, U.; Davies, A.G.: Morphodynamic modeling using the Telemac finite-element system. Comput. Geosci. 53, 105–113 (2013). https://doi.org/10.1016/j.cageo.2011.10.004

    Article  Google Scholar 

  13. Olsen, N.R.B.; Melaaen, M.C.: Three-dimensional calculation of scour around cylinders. J. Hydraul. Eng. 119, 1048–1054 (1994)

    Article  Google Scholar 

  14. Olsen, N.R.B.; Stokseth, S.: Three-dimensional numerical modelling of water flow in a river with large bed roughness. J. Hydraul. Res. 33, 571–581 (1995). https://doi.org/10.1080/00221689509498662

    Article  Google Scholar 

  15. Richardsonl, J.E.; Panchan, V.G.: Three-dimensional simulation of scour-inducing flow at bridge piers. J. Hydraul. Eng. 124, 530–540 (1998)

    Article  Google Scholar 

  16. Roulund, A.; Sumer, B.M.; Fredsoe, J.; Michelsen, J.: Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351–401 (2005). https://doi.org/10.1017/S0022112005004507

    Article  MathSciNet  MATH  Google Scholar 

  17. Ali, K.H.M.; Karim, O.: Simulation of flow around piers. J. Hydraul. Res. 40, 161–174 (2002). https://doi.org/10.1080/00221680209499859

    Article  Google Scholar 

  18. Salaheldin, T.M.; Imran, J.; Chaudhry, M.H.: Numerical modeling of three-dimensional flow field around circular piers. J. Hydraul. Eng. 130, 91–100 (2004)

    Article  Google Scholar 

  19. Sakib, M.N.: phD-CFD Techniques for Simulation of Flow in a Scour Hole Around a Bridge Pier, Ph.D. (2013)

  20. Khosronejad, A.; Kang, S.; Sotiropoulos, F.: Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour. 37, 73–85 (2012). https://doi.org/10.1016/j.advwatres.2011.09.013

    Article  Google Scholar 

  21. Thanh, N.V.; Chung, D.H.; Nghien, T.D.: Prediction of the local scour at the bridge square pier using a 3D numerical model. Open J. Appl. Sci. 4, 34–42 (2014). https://doi.org/10.4236/ojapps.2014.42005

    Article  Google Scholar 

  22. Ahmad, N.; Bihs, H.; Kamath, A.; Arntsen, Ø.A.: Three-dimensional CFD modeling of wave scour around side-by-side and triangular arrangement of piles with REEF3D. Procedia Eng. 116, 683–690 (2015). https://doi.org/10.1016/j.proeng.2015.08.355

    Article  Google Scholar 

  23. Baykal, C.; Sumer, B.M.; Fuhrman, D.R.; Jacobsen, N.G.; Fredsøe, J.: Numerical investigation of flow and scour around a vertical circular cylinder. Philos. Trans. A. 373, 1048–1054 (2015). https://doi.org/10.1098/rsta.2014.0104

    Google Scholar 

  24. Pang, A.L.J.; Skote, M.; Lim, S.Y.; Gullman-strand, J.; Morgan, N.: A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Phys. Procedia 57, 114–124 (2016). https://doi.org/10.1016/j.apor.2016.02.010

    Google Scholar 

  25. Bozkus, Z.; Yildiz, O.: Effects of inclination of bridge piers on scouring depth. J. Hydraul. Eng. 130, 827–832 (2004). https://doi.org/10.1061/(ASCE)0733-9429(2004)130:8(827)

    Article  Google Scholar 

  26. Vaghefi, M.; Ghodsian, M.; Salimi, S.: The effect of circular bridge piers with different inclination angles toward. Sadhana. (2015). https://doi.org/10.1007/s12046-015-0443-x

  27. Bozkuş, Z.; Çeşme, M.: Reduction of scouring depth by using inclined piers. Can. J. Civ. Eng. 37, 1621–1630 (2010). https://doi.org/10.1139/L10-099

    Article  Google Scholar 

  28. Vaghefi, M.; Ghodsian, M.; Salimi, S.: Scour formation due to laterally inclined circular pier. Arab. J. Sci. Eng. 41, 1311–1318 (2016). https://doi.org/10.1007/s13369-015-1920-6

    Article  Google Scholar 

  29. Ben, S.; Khajeh, M.; Vaghefi, M.: The scour pattern around an inclined cylindrical pier in a sharp 180-degree bend? An experimental study. Int. J. River Basin Manag. (2017). https://doi.org/10.1080/15715124.2016.1274322

  30. Vlachos, P.P.; Telionis, D.P.: The effect of free surface on the vortex shedding from inclined circular cylinders. J. Fluids Eng. 130, 1–9 (2017). https://doi.org/10.1115/1.2829578

    Google Scholar 

  31. Jain, A.; Modarres-sadeghi, Y.: Vortex-induced vibrations of a flexibly-mounted inclined cylinder. J. Fluids Struct. 43, 28–40 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.08.005

    Article  Google Scholar 

  32. Norton, D.J.; Texas, A.: Wind tunnel tests of inclined circular cylinders. In: Offshore Technology Conference (1983)

  33. Kitsikoudis, V.; Kirca, V.S.O.; Yagci, O.; Furkan, M.: Clear-water scour and flow field alteration around an inclined pile 129, 59–73 (2017). https://doi.org/10.1016/j.coastaleng.2017.09.001

  34. Xie, Z.: phD Theoretical and numerical research on sediment transport in pressurized flow conditions, Ph.D. 217 (2011)

  35. Wei, G.; Brethour, J.; Grünzner, M.; Burnham, J.: Report sedimentation scour model. Flow Science Inc. Report 03-1–29 (2014)

  36. Hirt, B.D.; Nichols, C.W.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1985)

    Article  MATH  Google Scholar 

  37. Zhang, Q.; Zhou, X.; Wang, J.: Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng. 142, 625–638 (2017). https://doi.org/10.1016/j.oceaneng.2017.07.045

    Article  Google Scholar 

  38. van Rijn, L.C.: Sediment Transport modeling (1985). https://doi.org/10.5772/647

  39. Meyer-Peter, E.; Muller, R.: Formulas for bed-load transport. Int. Assoc. Hydraul. Struct. Res. 2, 7–9 (1948)

    Google Scholar 

  40. Melville, B.W.: Local scour at bridge sltes. Ph.D. 1994 (1975)

  41. Dey, S.; Bose, S.K.; Sastry, G.L.: Clear water scour at circular piers: a model. J. Hydraul. Eng. 121(12), 869–876 (1995)

    Article  Google Scholar 

  42. Olsen, N.R.B.; Kjellesvig, H.M.: Three-dimensional numerical flow modeling for estimation of maximum local scour depth. J. Hydraul. Res. 36, 579–590 (1998)

    Article  Google Scholar 

  43. Nagata, N.; Hosoda, T.; Nakato, T.; Muramoto, Y.: Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J. Hydraul. Eng. 131, 1074–1087 (2005). https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1074)

    Article  Google Scholar 

  44. Zhi-wen, Z.H.U.; Zhen-qing, L.I.U.: CFD prediction of local scour hole around bridge piers. J. Cent. South Univ. (2012). https://doi.org/10.1007/s11771

  45. Pang, A.L.J.; Global, R.; Centre, T.; Morgan, N.; Register, L.: Determining Scour Depth for Offshore Structures Based on a Hydrodynamics and Optimisation Approach. In: OTC-26848-MS (2016)

  46. Ahmed, F.; Rajaratnam, N.: Flow around bridge piers. J. Hydraul. Eng. 124, 288–300 (1998)

    Article  Google Scholar 

  47. Lyn, D.A.: Turbulence models for sediment transport engineering. Sediment. Eng. (2013). https://doi.org/10.1061/9780784408148.ch16

  48. Ghiassi, R.; Abbasnia, A.H.: Investigation of vorticity effects on local scouring. Arab. J. Sci. Eng. 38, 537–548 (2013). https://doi.org/10.1007/s13369-012-0337-8

    Article  MathSciNet  Google Scholar 

  49. Dargahi, B.: Flow field and local scouring around a cylinder. Bulletin No. TRITA-VBI, 137 (1987)

  50. Kitsikoudis, V.; Yagci, O.; Kirca, V.S.O.: Experimental investigation of channel flow through idealized isolated tree-like vegetation. Environ. Fluid Mech. (2016). https://doi.org/10.1007/s10652-016-9487-7

  51. Akhtaruzzaman Sarker, M.: Flow measurement around scoured bridge piers using Acoustic–Doppler velocimeter (ADV). Flow Meas. Instrum. 9, 217–227 (1998). https://doi.org/10.1016/S0955-5986(98)00028-4

    Article  Google Scholar 

  52. Kobayashi, T.: 3-D analysis of flow around a vertical cylinder on a scoured bed. Flow Around Vert. Cylind. 1992, 3482 (1993)

    Google Scholar 

  53. Link, O.; Pfleger, F.; Zanke, U.: Characteristics of developing scour-holes at a sand-embedded cylinder. Int. J. Sediment Res. 23, 258–266 (2008). https://doi.org/10.1016/S1001-6279(08)60023-2

    Article  Google Scholar 

  54. Jahangirzadeh, A.; Basser, H.; Akib, S.; Karami, H.; Naji, S.; Shamshirband, S.: Experimental and numerical investigation of the effect of different shapes of collars on the reduction of scour around a single bridge pier. PLoS ONE 9, e98592 (2014). https://doi.org/10.1371/journal.pone.0098592

    Article  Google Scholar 

Download references

Acknowledgements

The first author is supported by a scholarship from the Mission Department, Ministry of Higher Education, Egypt, which is gratefully acknowledged. Second, I am thankful to Egypt-Japan University of Science and Technology (E-JUST) and Japan International Cooperation Agency (JICA) for offering the tools and equipment needed for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Omara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omara, H., Elsayed, S.M., Abdeelaal, G.M. et al. Hydromorphological Numerical Model of the Local Scour Process Around Bridge Piers. Arab J Sci Eng 44, 4183–4199 (2019). https://doi.org/10.1007/s13369-018-3359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3359-z

Keywords

Navigation