Skip to main content
Log in

Modified Two-Step Method to Prepare Long-Term Stable CNT Nanofluids for Heat Transfer Applications

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

CNT nanofluids are getting attention in heat transfer applications due to their very high thermal conductivity in comparison with conventional fluids. For commercial exploitation of CNT nanofluids as heat transfer media, they must have long-term stability. In this study, the two-step method was modified to prepare dynamically stable CNT nanofluids by utilizing commercial grade multiwalled carbon nanotubes and SDBS as a surfactant. The modified technique consists of separation of coarse agglomerates of CNT from the CNT nanofluids by applying centrifugal action after its preparation. The effect of relative centrifugal force was also studied for the very first time on the stable concentration of CNT nanofluids. The stability of CNT nanofluids was analyzed by measurement of their CNT concentration and Zeta potential. Results showed that CNT nanofluids possess good stability and remain stable for more than 15 months. In addition to stability, thermo-physical properties such as thermal conductivity, density, and viscosity of CNT nanofluids were also measured. The results of this study elucidated the effect of RCF on the stable concentration of CNT nanofluids. It is expected that the results obtained in this study may significantly contribute to the proper tailoring of CNT nanofluids, by providing long-term stable CNT nanofluids which are suitable for industrial heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sandhu, H.; Gangacharyulu, D.: An experimental study on stability and some thermo physical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures. Part. Sci. Technol. (2016). https://doi.org/10.1080/02726351.2016.1180335

    Article  Google Scholar 

  2. Babita; Sharma, S.K.; Gupta, S.M.: Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp. Therm. Fluid Sci. 79, 202–212 (2016)

    Article  Google Scholar 

  3. Karami, M.; Akhavan Bahabadi, M.A.; Delfani, S.; Ghozatloo, A.: A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol. Energy Mater. Sol. Cells 121, 114–118 (2014)

    Article  Google Scholar 

  4. Sadri, R.; Ahmadi, G.; Togun, H.; Dahari, M.; Kazi, S.N.; Sadeghinezhad, E.; Zubir, N.: An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res. Lett. 9, 151 (2014)

    Article  Google Scholar 

  5. Babita; Sharma, S.K.; Gupta, S.M.; Kumar, A.: Effect of surfactant on CNT dispersion in polar media and thermal conductivity of prepared CNT nanofluids. JEAS 13, 1202–1211 (2018)

  6. Khairul, M.A.; Saidur, R.; Hossain, A.; Alim, M.A.; Mahbubul, I.M.: Heat transfer performance of different nanofluids flows in a helically coiled heat exchanger. Adv. Mater. Res. 832, 160–165 (2014)

    Article  Google Scholar 

  7. Akbaridoust, F.; Rakhsha, M.; Abbassi, A.; Saffar-Avval, M.: Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model. Int. J. Heat Mass Transf. 58, 480–491 (2013)

    Article  Google Scholar 

  8. Pantzali, M.N.; Mouza, A.A.; Paras, S.V.: Investigating the efficiency of nanofluids as coolants in plate heat exchanger (PHE). Chem Eng. Sci. 64(14), 3290–3300 (2009)

    Article  Google Scholar 

  9. Ding, Y.; Alias, H.; Wen, D.; Williams, R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 49, 240–250 (2006)

    Article  Google Scholar 

  10. Madhesh, D.; Kalaiselvam, S.: Preparation and characterization of MWCNT-water nanofluids for heat transfer applications. J. Adv. Mech. Eng. 4(2), 193–198 (2014)

    Google Scholar 

  11. Walvekar, R.; Faris, I.A.; Khalid, M.: Thermal conductivity of carbon nanotube nanofluid-experimental and theoretical study. Heat Transf. Asian Res. 41(2), 145–163 (2012)

    Article  Google Scholar 

  12. Kim, P.; Shi, L.; Mujumdar, A.; McEuwn, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 1–4 (2001)

    Article  Google Scholar 

  13. Berber, S.; Kwon, Y.K.; Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)

    Article  Google Scholar 

  14. Garg, P.; Alvarado, J.L.; Marsh, C.; Carlson, T.A.; Kessler, D.A.; Annamalai, K.: An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Transf. 52, 5090–5101 (2009)

    Article  Google Scholar 

  15. Ong, S. S.; Walvekar, R.: Heat transfer enhancement using CNT nanofluids in a turbulent flow heat exchanger—an experimental study. EURECA 127–128 (2013)

  16. Walvekar, R.; Siddiqui, M.K.; Ong, S.S.; Ismail, A.F.: Application of CNT nanofluids in a turbulent flow heat exchanger. J. Exp. Nanosci. 10(1), 1–17 (2015)

    Article  Google Scholar 

  17. Babita; Sharma, S.K.; Gupta, S. M.; Kumar, Arinjay.: Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger. Mater. Res. Lett. 4, 124002 (2017)

    Article  Google Scholar 

  18. Yazid, M.N.A.W.M.; Sidik, N.A.C.; Mamat, R.; Najafi, G.: A review of the impact of preparation on stability of carbon nanotube nanofluids. Int. Commun. Heat Mass Transf. 78, 253–263 (2016)

    Article  Google Scholar 

  19. Kun, Y.; Li, Y.Z.; Feng, J.Q.; Liang, Y.R.; Wei, J.; Hui, L.D.: Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: the role of sonication energy. Chin. Sci. Bull. 58(17), 2082–2090 (2013)

    Article  Google Scholar 

  20. Shanbedi, M.; Heris, S.Z.; Maskooki, A.: Experimental investigation of stability and thermos-physical properties of carbon nanotubes suspension in the presence of different surfactants. J. Therm. Anal. Calorim. 120, 1193–1201 (2015)

    Article  Google Scholar 

  21. Halelfadl, S.; Mare, T.; Estelle, P.: Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci. 53, 104–110 (2014)

    Article  Google Scholar 

  22. Ju, L.; Zhang, W.; Wang, X.; Hu, J.; Zhang, Y.: Aggregation kinetics of SDBS dispersed carbon nanotubes in different aqueous suspensions. Colloids Surf. A 409, 159–166 (2012)

    Article  Google Scholar 

  23. Nasiri, A.; Shariaty Niasar, M.; Rashidi, A.M.; Khodafarin, R.: Effect of CNT structures on thermal conductivity and stability of nanofluid. Int. J. Heat Mass Transf. 55, 1529–1535 (2012)

    Article  Google Scholar 

  24. Tang, Q.Y.; Shafiq, I.; Chan, Y.C.; Wong, N.B.; Cheung, R.: Study of the dispersion and electrical properties of carbon nanotubes treated by surfactants in dimethyl acetamide. J. Nanosci. Nanotechnol. 10, 4967–4974 (2010)

    Article  Google Scholar 

  25. Teng, T.P.; Fang, Y.B.; Hsu, Y.C.; Lin, L.: Evaluating stability of aqueous multiwalled carbon nanotube nanofluids by using different stabilizers. J. Nanomater. 2014, 203–217 (2014)

    Article  Google Scholar 

  26. Kim, H.S.; Park, W.I.; Kang, M.; Jin, H.J.: Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J. Phys. Chem. Solids. 69, 1209–1212 (2008)

    Article  Google Scholar 

  27. Babita; Sharma, S.K.; Gupta, S. M.; Kumar, Arinjay.: Effect of surfactant/CNTs ratio on stability of CNT nanofluids. Adv. Sci. Lett. 24(2), 812–816 (2018)

  28. Patil, R.K.; Shende, B.W.; Ghosh, P.K.: Designing a helical coil heat exchanger. Chem. Eng. 13, 85–88 (1982)

    Google Scholar 

  29. Lamas, B.; Abreu, B.; Fonseca, A.; Martins, N.; Oliveira, M.: Assessing colloidal stability of long term MWCNT based nanofluids. J. Colloid Interface Sci. 381, 17–23 (2012)

    Article  Google Scholar 

  30. Phuoc, T.X.; Massoudi, M.; Chen, R.H.: Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int. J. Therm. Sci. 50, 12–18 (2011)

    Article  Google Scholar 

  31. Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J.H.; Balzano, L.; Resasco, D.E.: Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107, 13357–13367 (2003)

    Article  Google Scholar 

  32. Kumar, J.G.; Kathirkaman, M.D.; Raja, K.; Kumaresan, V.; Velraj, R.: Experimental study on density, thermal conductivity, specific heat and viscosity of water–ethylene glycol mixture dispersed with carbon nanotubes. Therm. Sci. (2015). https://doi.org/10.2298/tsci141015028g

    Article  Google Scholar 

  33. Crescenzo, A.D.; Germani, R.; Canto, E.D.; Giordani, S.; Savelli, G.; Fontana, A.: Effect of surfactant structure on Carbon nanotubes sidewall adsorption. Eur. J. Org. Chem. 2011(28), 5641–5648 (2011)

    Article  Google Scholar 

  34. Hiemez, P.C.; Rajagopalan, R.: Principles of Colloid and Surface Chemistry, 3rd edn. Marcel Dekker, New York (1997)

    Book  Google Scholar 

  35. Ghadimi, A.; Saidur, R.; Metselaar, H.S.C.: A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54, 4051–4068 (2011)

    Article  Google Scholar 

  36. Chen, L.; et al.: Applications of cationic gemini surfactant in preparing multi-walled carbon nanotube contained nanofluids. Colloids Surf. A. 330, 176–179 (2008)

    Article  Google Scholar 

  37. Hwang, Y.; Lee, J.K.; Jeong, Y.-M.; Cheong, S.; Ahn, Y.C.; Kim, S.H.: Production of and dispersion stability of nano-particles in nanofluids. Powder Technol. 186(2), 145–153 (2008)

    Article  Google Scholar 

  38. Murshed, S.M.; et al.: Characterization of electrokinetic properties of nanofluids. J. Nanosci. Nanotechnol. 8, 5966–5971 (2008)

    Article  Google Scholar 

  39. Glory, J.; Bonetti, M.; Helezen, M.; Mayne, L.; Hermite, M.; Reynaud, C.: Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J. Appl. Phys. 103, 1–7 (2008)

    Article  Google Scholar 

  40. Babita; Sharma, S.K.; Gupta, S.M.: Synergic effect of SDBS and GA to prepare stable dispersion of CNT in water for industrial heat transfer applications. Mater. Res. Lett. 5(5) (2018). https://doi.org/10.1088/2053-1591/aac579

    Article  Google Scholar 

  41. Estelle, P.; Halelfadl, S.; Mare, T.: Thermal conductivity of CNT water based nanofluids: experimental trends and models overview. J. Therm. Eng. 1(2), 381–390 (2015)

    Article  Google Scholar 

  42. Nasiri, A.; Niasar, M.S.; Rashidi, A.; Amrollahi, A.; Khodafarin, R.: Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp. Therm. Fluid Sci. 35, 717–723 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. SSBUICET, Panjab University, Chandigarh, India, for thermal conductivity analysis. This study is financially supported by GGSIP University, New Delhi, India, under FRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Sharma, S.K., Gupta, S.M. et al. Modified Two-Step Method to Prepare Long-Term Stable CNT Nanofluids for Heat Transfer Applications. Arab J Sci Eng 43, 6155–6163 (2018). https://doi.org/10.1007/s13369-018-3345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3345-5

Keywords

Navigation