Skip to main content
Log in

Optimal Pseudo-Average Order Kinetic Model for Correlating the Removal of Nickel Ions by Adsorption on Nanobentonite

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Batch kinetic experiments were performed for the sorption of nickel ions onto nanobentonite. The kinetic data were adjusted with pseudo-first-order and pseudo-second-order kinetics by linear and nonlinear regressions in addition to some fixed suggested fractional orders \(1/2 \le n \le 5/2\). The removal process was found to be well explained by nonlinear pseudo-second-order kinetic expression with 0.5222 mg \(\hbox {g}^{-1}\) standard deviation, whereas linear regression is improper method for obtaining the kinetic parameters of the studied models specially at lower order values. The kinetic rate constants were increased with the value of the prefixed reaction pseudo-order giving optimal pseudo-average order equal to 3.522 with standard deviation 0.0815 mg \(\text {g}^{-1}\). This optimal value is estimated at infinite time which is physically become closer to the reality of the studied system. Nevertheless, the theoretical removal capacity (22.95 mg \(\text {g}^{-1})\) calculated by optimal order value is greater than the experimental one (19.15 mg \(\text {g}^{-1})\). This behavior can be attributed to the rapidity of the process to reach the equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, I.; Aboul-Enein, H.Y.: Instrumental Methods in Metal Ions Speciation: Chromatography, Capillary Electrophoresis and Electrochemistry. CRC Press, New York (2006)

    Book  Google Scholar 

  2. Ali, I.; Aboul-Enein, H.Y.; Gupta, V.K.: Nano Chromatography and Capillary Electrophoresis: Pharmaceutical and Environmental Analyses. Wiley, Hoboken (2009)

    Google Scholar 

  3. Gupta, V.K.; Ali, I.: Environmental Water: Advances in Treatment, Remediation and Recycling. Elsevier, Amsterdam (2012)

    Google Scholar 

  4. Mahvi, A.H.: Application of agricultural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Technol. 5, 275–285 (2008)

    Article  Google Scholar 

  5. Pillai, S.S.; Deepa, B.; Abraham, E.; Girija, N.; Geetha, P.; Jacob, L.; Koshy, M.: Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 98, 352–360 (2013)

    Article  Google Scholar 

  6. Zamboulis, D.; Peleka, E.N.; Lazaridis, N.K.; Matis, K.A.: Removal of toxic metal ions from aqueous systems by biosorptive flotation. J. Chem. Tech. Biotechnol. 86, 335–344 (2011)

    Article  Google Scholar 

  7. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.; Alwarthan, A.; Basheer, Al-A: Artificial neural network modelling of amido black dye sorption on iron composite nano material: kinetics and thermodynamics studies. J. Mol. Liq. 250, 1–8 (2018)

    Article  Google Scholar 

  8. Ali, I.; Alothman, Z.A.; Alwarthan, A.: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017)

    Article  Google Scholar 

  9. Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016)

    Article  Google Scholar 

  10. Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 221, 1168–1174 (2016)

    Article  Google Scholar 

  11. Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J. Mol. Liq. 219, 858–864 (2016)

    Article  Google Scholar 

  12. Barakat, M.A.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011)

    Article  Google Scholar 

  13. Alakhras, F.A.; Abu Dari, K.; Mubarak, M.S.: Synthesis and chelating properties of some poly(amidoxime-hydroxamic acid) resins toward some trivalent lanthanide metal ions. J. Appl. Polym. Sci. 97, 691–696 (2005)

    Article  Google Scholar 

  14. Khan, T.A.; Sharma, S.; Ali, I.: Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies. J. Toxicol. Environ. Health Sci. 3(10), 286–297 (2011)

    Google Scholar 

  15. Ali, I.; Gupta, V.K.; Khan, T.A.; Asim, M.: Removal of arsenate from aqueous solution by electro-coagulation method using Al–Fe electrodes. Int. J. Electrochem. Sci. 7, 1898–1907 (2012)

    Google Scholar 

  16. Ali, I.; Alothman, Z.A.; Alwarthan, A.: Supra molecular mechanism of the removal of 17-\(\beta \)-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq. 241, 123–129 (2017)

    Article  Google Scholar 

  17. Ali, I.; Jain, C.K.: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84(12), 947–964 (2004)

    Article  Google Scholar 

  18. Ali, I.; Khan, T.A.; Asim, M.: Removal of arsenate from groundwater by electrocoagulation method. Environ. Sci. Pollut. Res. 19(5), 1668–1676 (2012)

    Article  Google Scholar 

  19. Ali, I.; Alothman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A.: Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ. Sci. Pollut. Res. 21(5), 3218–3229 (2014)

    Article  Google Scholar 

  20. Inglezakis, V.J.; Stylianou, M.A.; Gkantzou, D.; Loizidou, M.D.: Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 210, 248–256 (2006)

    Article  Google Scholar 

  21. Taha, A.A.; Ahmed, A.M.; Abdel Rahman, H.H.; Abouzeid, F.M.; Abdel Maksoud, M.O.: Removal of nickel ions by adsorption on nano-bentonite: equilibrium, kinetics, and thermodynamics. J. Dispers. Sci. Technol. 38, 757–767 (2017)

    Article  Google Scholar 

  22. Ayari, F.; Srasra, E.; Trabelsi-Ayad, M.: Removal of lead, zinc and nickel using sodium bentonite activated clay. Asian J. Chem. 19, 3325–3339 (2007)

    Google Scholar 

  23. Cadena, F.; Rizvi, R.; Peters, R.W.: Feasibility studies for the removal of heavy metals from solution using tailored bentonite. In: Hazardous and Industrial Waste Conference, Dexel University, pp. 77–94 (1990)

  24. Ayari, F.; Srasra, E.; Trabelsi-Ayadi, M.: Characterization of bentonitic clays and their use as adsorbent. Desalination 185, 391–397 (2005)

    Article  Google Scholar 

  25. Kapoor, A.; Viraraghavan, T.: Use of immobilized bentonite in removal of heavy metals from wastewater. J. Environ. Eng. 124, 1020–1024 (1998)

    Article  Google Scholar 

  26. Sadegh, H.; Shahryari-Ghoshekandi, R.; Kazemi, M.: Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int. Nano Lett. 4, 129–135 (2014)

    Article  Google Scholar 

  27. Zare, K.; Najafi, F.; Sadegh, H.; Ghoshekandi, R.S.: Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J. Nanostruct. Chem. 3, 71–78 (2013)

    Article  Google Scholar 

  28. Ali, I.; Alothman, Z.A.; Alwarthan, A.: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Technol. 13, 733–742 (2016)

    Article  Google Scholar 

  29. Ali, I.; Alothman, Z.A.; Alwarthan, A.: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalination Water Treat. 57(22), 10409–10421 (2016)

    Article  Google Scholar 

  30. Dehghani, M.H.; Sanaei, D.; Ali, I.; Bhatnagar, A.: Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671–679 (2016)

    Article  Google Scholar 

  31. Ali, I.; Al-Othman, Z.A.; Sanagi, M.M.: Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015)

    Article  Google Scholar 

  32. Ali, I.; Al-Othman, Z.A.; Alharbi, O.M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J. Mol. Liq. 218, 465–472 (2016)

    Article  Google Scholar 

  33. Rickerby, D.G.; Morrison, M.: Nanotechnology and the environment: a European perspective. Sci. Technol. Adv. Mater. 8, 19–24 (2007)

    Article  Google Scholar 

  34. Hashemian, S.: Modified sawdust for removal of methyl violet (basic dye) from aqueous solutions. Asian J. Chem. 21, 3622–3630 (2009)

    Google Scholar 

  35. Pedro, Q.; Alvarez, J.J.; Qilin, L.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013)

    Article  Google Scholar 

  36. Ozacar, M.; Sengil, I.A.: Application of kinetic models to the sorption of disperse dyes onto alunite. Colloids Surf. A. 242, 105–113 (2004)

    Article  Google Scholar 

  37. Lima, E.C.; Adebayo, M.A.; Machado, F.M.: Kinetic and equilibrium models of adsorption. In: Bergmann, C.P., Machado, F.M. (eds.) Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, pp. 33–69. Springer, Berlin (2015)

    Chapter  Google Scholar 

  38. Ornek, A.; Ozacar, M.; Sengil, I.A.: Adsorption of lead onto formaldehyde or sulphuric acid treated acorn waste: equilibrium and kinetic studies. Biochem. Eng. J. 37, 192–200 (2007)

    Article  Google Scholar 

  39. Ho, Y.S.; McKay, G.: Kinetic models for the sorption of dye from aqueous solution by wood. Proc. Saf. Environ. Prot. 76, 183–191 (1998)

    Article  Google Scholar 

  40. Ho, Y.S.; McKay, G.: A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Proc. Saf. Environ. Prot. 76, 323–340 (1998)

    Google Scholar 

  41. Ho, Y.S.; McKay, G.: Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451–465 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Alakhras.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the co-authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alakhras, F., Ouerfelli, N., Al-Mazaideh, G. et al. Optimal Pseudo-Average Order Kinetic Model for Correlating the Removal of Nickel Ions by Adsorption on Nanobentonite. Arab J Sci Eng 44, 159–168 (2019). https://doi.org/10.1007/s13369-018-3304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3304-1

Keywords

Navigation