Skip to main content
Log in

Reagentless Electrochemiluminescence Sensor for Triazophos Based on Molecular Imprinting Electropolymerized Poly(Luminol-p-Aminothiophenol) Composite-Modified Gold Electrode

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Combining high recognition selectivity with excellent electrochemiluminescent (ECL) performance, the imprinted poly(luminol-p-aminothiophenol) was prepared by the electrochemical copolymerization of luminol and p-aminothiophenol onto the gold electrode surface in the presence of triazophos. The recognition selectivity and ECL of the imprinted poly(luminol-p-aminothiophenol) were studied using triazophos as analyte. It was found that the imprinted poly(luminol-p-aminothiophenol) presented better ECL emission to triazophos than that of the polyluminol. On this basis, a reagentless ECL sensor based on the imprinted poly(luminol-p-aminothiophenol) as recognition elements is established for the detection of ultra-trace triazophos residues in the environmental water samples under near neutral condition. The resulting reagentless ECL sensor shows wide linear ranges from \(1.0 \times 10^{-10}\) to \(1.0 \times 10^{-6}\) M with lower detection limit of \(5.8 \times 10^{-11}\) M for triazophos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gui, W.J.; Wang, S.T.; Guo, Y.R.; Zhu, G.N.: Development of a one-step strip for the detection of triazophos residues in environmental samples. Anal. Biochem. 377, 202–208 (2008)

    Article  Google Scholar 

  2. Du, D.; Huang, X.; Cai, J.; Zhang, A.D.: Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sens. Actuators B Chem. 127, 531–535 (2007)

    Article  Google Scholar 

  3. Xiong, J.; Hu, B.: Comparison of hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection. J. Chromatogr. A. 1193, 7–18 (2008)

    Article  Google Scholar 

  4. Galán-Cano, F.; Lucena, R.; Cárdenas, S.; Valcárcel, M.: Dispersive micro-solid phase extraction with ionic liquid-modified silica for the determination of organophosphate pesticides in water by ultra performance liquid chromatography. Microchem. J. 106, 311–317 (2013)

    Article  Google Scholar 

  5. Romero-González, R.; Garrido, F.A.; Martínez, V.J.L.: Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to Tandem mass spectrometry. Talanta 76, 211–225 (2008)

    Article  Google Scholar 

  6. Du, P.F.; Jin, M.J.; Chen, G.; Zhang, C.; Cui, X.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zou, P.; Jiang, Z.; Cao, X.; She, Y.; Jin, F.; Wang, J.: Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement. Microchim. Acta 184, 3705–3712 (2017)

    Article  Google Scholar 

  7. Guo, Y.R.; Liu, S.Y.; Gui, W.J.; Zhu, G.N.: Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal. Biochem. 389, 32–39 (2009)

    Article  Google Scholar 

  8. Zhang, C.; Du, P.F.; Jiang, Z.J.; Jin, M.J.; Chen, G.; Cao, X.L.; Cui, X.Y.; Zhang, Y.D.; Li, R.X.; Abd El-Aty, A.M.; Wang, J.: A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Anal. Chim. Acta 999, 123–131 (2018)

    Article  Google Scholar 

  9. Ju, K.J.; Feng, J.X.; Feng, J.J.; Zhang, Q.L.; Xu, T.Q.; Wei, J.; Wang, A.J.: Biosensor for pesticide triazophos based on its inhibition of acetylcholinesterase and using a glassy carbon electrode modified with coral-like gold nanostructures supported on reduced graphene oxide. Microchim. Acta 182, 2427–2434 (2015)

    Article  Google Scholar 

  10. Du, D.; Cai, J.; Song, D.D.; Zhang, A.D.: Rapid determination of triazophos using acetylcholinesterase biosensor based on sol–gel interface assembling multiwall carbon nanotubes. J. Appl. Electrochem. 37, 893–898 (2007)

    Article  Google Scholar 

  11. Haupt, K.; Mosbach, K.: Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 495–2504 (2000)

    Article  Google Scholar 

  12. Wulff, G.: Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 102, 1–27 (2002)

    Article  Google Scholar 

  13. Guan, G.J.; Liu, B.H.; Wang, W.Y.; Zhang, Z.P.: Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Sensors 8, 8291–8320 (2008)

    Article  Google Scholar 

  14. Lu, C.; Zhou, W.; Han, B.; Yang, H.; Chen, X.; Wang, X.: Surface-imprinted core–shell nanoparticles for sorbent assays. Anal. Chem. 79, 5457–5461 (2007)

    Article  Google Scholar 

  15. Gao, D.M.; Zhang, Z.P.; Wu, M.H.; Xie, C.G.; Guan, G.J.; Wang, D.P.: A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J. Am. Chem. Soc. 129, 7859–7866 (2007)

    Article  Google Scholar 

  16. Titirici, M.M.; Sellergren, B.: Thin Molecularly imprinted polymer films via reversible addition–fragmentation chain transfer polymerization. Chem. Mater. 18, 1773–1779 (2006)

    Article  Google Scholar 

  17. Liu, H.B.; Qiao, L.; Gan, N.; Lin, S.H.; Cao, Y.T.; Hu, F.T.; Wang, J.Y.; Chen, Y.J.: Electro-deposited poly-luminol molecularly imprinted polymer coating on carboxyl graphene for stir bar sorptive extraction of estrogens in milk. J. Chromatogr. B. 1027, 50–56 (2016)

    Article  Google Scholar 

  18. Nabid, M.R.; Taheri, S.S.; Sedghi, R.; Rezaei, S.J.T.: Synthesis and characterization of chemiluminescent conducting polyluminol via biocatalysis. Macromol. Res. 19, 280–285 (2011)

    Article  Google Scholar 

  19. Riskin, M.; Tel-Vered, R.; Bourenko, T.; Granot, E.; Willner, I.: Imprinting of molecular recognition sites through eletropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on \(\pi \)-donor–acceptor interactions. J. Am. Chem. Soc. 130, 9726–9733 (2008)

    Article  Google Scholar 

  20. Li, H.F.; Xie, C.G.; Li, S.Q.; Xu, K.: Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos. Colloids Surf. B. 89, 175–181 (2012)

    Article  Google Scholar 

  21. Li, H.F.; Xie, T.; Ye, L.L.; Wang, Y.W.; Xie, C.G.: Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Microchim. Acta 184, 1011–1019 (2017)

    Article  Google Scholar 

  22. Richter, M.M.: Electrochemiluminescence (ECL). Chem. Rev. 104, 3003–3036 (2004)

    Article  Google Scholar 

  23. Nobeshima, T.; Morimoto, T.; Nakamura, K.; Kobayashi, N.: Advantage of an AC-driven electrochemiluminescent cell containing a \(\text{ Ru(bpy) }_{3}^{2+}\) complex for quick response and high efficiency. J. Mater. Chem. 20, 10630–10633 (2010)

    Article  Google Scholar 

  24. Wang, X.F.; Zhou, Y.; Xu, J.J.; Chen, H.Y.: Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv. Funct. Mater. 19, 1444–1450 (2009)

    Article  Google Scholar 

  25. Rong, J.F.; Chi, Y.W.; Zhang, Y.J.; Chen, L.C.; Chen, G.N.: Enhanced electrochemiluminescence of luminol-\(\text{ O }_{2}\) system at gold-hydrophobic ionic liquid water interface. Electrochem. Commun. 12, 270–273 (2010)

    Article  Google Scholar 

  26. Chu, H.H.; Guo, W.Y.; Di, J.W.; Wu, Y.; Tu, Y.F.: Study on sensitization from reactive oxygen species for electrochemiluminescence of luminol in neutral medium. Electroanalysis 21, 1630–1635 (2009)

    Article  Google Scholar 

  27. Li, H.F.; Xie, C.G.; Fu, X.C.: Electrochemiluminescence sensor for sulfonylurea herbicide with molecular imprinting core–shell nanoparticles/chitosan composite film modified glassy carbon electrode. Sens. Actuators B Chem. 181, 858–866 (2013)

    Article  Google Scholar 

  28. Li, H.F.; Xie, T.; Shi, D.D.; Jin, J.; Xie, C.G.: Enhanced electrochemiluminescence of luminol at the gold nanoparticle/carbon nanotube/electropolymerised molecular imprinting composite membrane interface for selective recognition of triazophos. Int. J. Environ. Anal. Chem. 96, 1300–1311 (2016)

    Article  Google Scholar 

  29. Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D.: Electrogeneration of polyluminol and chemiluminescence for new disposable reagentless optical sensors. Anal. Bioanal. Chem. 390, 865–871 (2008)

    Article  Google Scholar 

  30. Zhang, G.F.; Chen, H.Y.: Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system. Anal. Chim. Acta 419, 25–31 (2000)

  31. Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D.: Polymeric luminol on pre-treated screen-printed electrodes for the design of performant reagentless (bio) sensors. Sens. Actuators B Chem. 139, 214–221 (2009)

    Article  Google Scholar 

  32. Li, G.X.; Lian, J.L.; Zheng, X.W.; Cao, J.: Electrogenerated chemiluminescence biosensor for glucose based on poly(luminol-aniline) nanowires composite modified electrode. Biosens. Bioelectron. 26, 643–648 (2010)

    Article  Google Scholar 

  33. Ferreira, V.; Cascalheira, A.C.; Abrantes, L.M.: Electrochemical copolymerisation of luminol with aniline: a new route for the preparation of self-doped polyanilines. Electrochim. Acta 53, 3803–3811 (2008)

    Article  Google Scholar 

  34. Xie, C.G.; Li, H.F.; Li, S.Q.; Wu, J.; Zhang, Z.P.: Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Anal. Chem. 82, 241–249 (2010)

    Article  Google Scholar 

  35. Leca-Bouvier, B.D.; Sassolas, A.; Blum, L.J.: Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers. Anal. Bioanal. Chem. 406, 5657–5667 (2014)

    Article  Google Scholar 

  36. Cui, H.; Xu, Y.; Zhang, Z.F.: Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal. Chem. 76, 4002–4010 (2004)

    Article  Google Scholar 

  37. Li, G.X.; Zheng, X.W.; Song, L.: Electrochemiluminescence characterization of poly(luminol-benzidine) composite films and their analytical application. Electroanalysis 21, 845–852 (2009)

    Google Scholar 

  38. Bhamore, J.R.; Ganguly, P.; Kailasa, S.K.: Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples. Sens. Actuators B Chem. 233, 485–495 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggen Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, Y., Zha, H. et al. Reagentless Electrochemiluminescence Sensor for Triazophos Based on Molecular Imprinting Electropolymerized Poly(Luminol-p-Aminothiophenol) Composite-Modified Gold Electrode. Arab J Sci Eng 44, 145–152 (2019). https://doi.org/10.1007/s13369-018-3289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3289-9

Keywords

Navigation