Skip to main content

Advertisement

Log in

Nonlinear Dynamics of Three-Dimensional Prediction Model for a Flexible Riser Under Linearly Sheared Currents

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a three-dimensional vortex-induced vibration prediction model for a long flexible riser under linearly sheared currents. Two distributed and coupled van der Pol wake oscillators are utilized to characterize the fluctuating lift and drag coefficients, respectively. It should be noted that geometric and hydrodynamic nonlinearities are also considered in our model. Numerical simulations by finite element method are carried out to solve the highly coupled nonlinear fluid–structure interaction equations. Firstly, modal analysis is performed to obtain the foremost ten natural frequencies of the flexible riser under top-end tension by theoretical and numerical methods, and the results agree very well. Then, nonlinear dynamic analyses are carried out to investigate the effects of linear shear flow on displacements, stresses, modal variations and phase portraits. The results obtained in uniform and linear shear currents are compared in detail. The results indicate that the asymmetric phenomenon along the riser span is more obvious with increasing linear shear velocity and the lock-in phenomenon of IL (in-line) response frequencies with multi-frequency is also observed along riser span. Moreover, it is also revealed that the dynamic responses simultaneously exhibit the standing and travelling wave patterns under linearly sheared currents, and the dynamic responses become more irregular than uniform flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

L :

Length of pipe (m)

D :

Outer diameter (m)

d :

Inner diameter (m)

\(\rho _\mathrm{o}\) :

Outer fluid density (kg/m\(^{3}\))

m :

Pipe mass per unit length (kg/m)

\(m_\mathrm{a} \) :

Additional fluid mass per unit length (kg/m)

U :

Cross-flow velocity (m/s)

E :

Elasticity modulus (Pa)

c :

Damping coefficient (N/s)

I :

Moment of inertia (m\(^{4}\))

\(A_\mathrm{r} \) :

Section area of pipe (m\(^{2}\))

\(T_\mathrm{t} \) :

Top pre-tension (N)

T :

Static effective tension (N)

\(F_x \) :

x direction hydrodynamic force (N)

\(F_y \) :

y direction hydrodynamic force (N)

\(F_z \) :

z direction hydrodynamic force (N)

uvw :

Displacements components (m)

\({\dot{\square }}\) :

Differentiation about time (t)

\({\square }'\) :

Differentiation about axial coordinate (z)

References

  1. Montoya-Hernandez, D.J.; Vazquez-Hernandez, A.O.; Cuamatzi, R.; Hernandez, M.A.: Natural frequency analysis of a marine riser considering multiphase internal flow behavior. Ocean Eng. 92, 103–113 (2014). https://doi.org/10.1016/j.oceaneng.2014.09.039

    Article  Google Scholar 

  2. Srinil, N.; Wiercigroch, M.; O’Brien, P.: Reduced-order modelling of vortex-induced vibration of catenary riser. Ocean Eng. 36(17–18), 1404–1414 (2009). https://doi.org/10.1016/j.oceaneng.2009.08.010

    Article  Google Scholar 

  3. Wang, J.; Fu, S.; Baarholm, R.; Wu, J.; Larsen, C.M.: Fatigue damage of a steel catenary riser from vortex-induced vibration caused by vessel motions. Mar. Struct. 39(39), 131–156 (2014)

    Article  Google Scholar 

  4. Wang, J.G.; Fu, S.X.; Baarholm, R.; Wu, J.; Larsen, C.M.: Out-of-plane vortex-induced vibration of a steel catenary riser caused by vessel motions. Ocean Eng. 109, 389–400 (2015). https://doi.org/10.1016/j.oceaneng.2015.09.004

    Article  Google Scholar 

  5. Wang, J.L.; Duan, M.L.: A nonlinear model for deepwater steel lazy-wave riser configuration with ocean current and internal flow. Ocean Eng. 94, 155–162 (2015). https://doi.org/10.1016/j.oceaneng.2014.11.025

    Article  Google Scholar 

  6. Abdel Raheem, S.E.: Study on nonlinear response of steel fixed offshore platform under environmental loads. Arab. J. Sci. Eng. 39(8), 6017–6030 (2014). https://doi.org/10.1007/s13369-014-1148-x

    Article  Google Scholar 

  7. Doan, V.P.; Nishi, Y.: Modeling of fluid-structure interaction for simulating vortex-induced vibration of flexible riser: finite difference method combined with wake oscillator model. J. Mar. Sci. Technol. 20(2), 309–321 (2015)

    Article  Google Scholar 

  8. Luo, D.D.; Zhu, R.Q.: Three dimensional numerical simulation of VIV on marine riser in linearly sheared flow. Ship Sci. Technol. 37(2), 82–86 (2015)

    Google Scholar 

  9. Wang, K.P.; Xue, H.X.; Tang, W.Y.: In-Line VIV response and fatigue damage of a deepwater riser in linearly sheared flow. J. Vib. Shock 32(19), 1–6+27 (2013)

    Google Scholar 

  10. Brika, D.; Laneville, A.: Vortex-induced vibrations of a long flexible circular cylinder. J. Fluid Mech. 250(250), 481–508 (2006)

    Google Scholar 

  11. Huera-Huarte, F.J.; Bearman, P.W.: Wake structures and vortex-induced vibrations of a long flexible cylinder–Part 1: Dynamic response. J. Fluids Struct. 25(6), 969–990 (2009)

    Article  Google Scholar 

  12. Srinil, N.: Multi-mode interactions in vortex-induced vibrations of flexible curved/straight structures with geometric nonlinearities. J. Fluids Struct. 26(7–8), 1098–1122 (2010). https://doi.org/10.1016/j.jfluidstructs.2010.08.005

    Article  Google Scholar 

  13. Srinil, N.: Analysis and prediction of vortex-induced vibrations of variable-tension vertical risers in linearly sheared currents. Appl. Ocean Res. 33(1), 41–53 (2011). https://doi.org/10.1016/j.apor.2010.11.004

    Article  Google Scholar 

  14. Bearman, P.W.: Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27(5–6), 648–658 (2011)

    Article  Google Scholar 

  15. Gabbai, R.D.; Benaroya, H.: An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282(3–5), 575–616 (2005)

    Article  Google Scholar 

  16. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19(4), 389–447 (2004)

    Article  Google Scholar 

  17. Williamson, C.H.K.; Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36(1), 413–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, X.; Ge, F.; Hong, Y.: A review of recent studies on vortex-induced vibrations of long slender cylinders. J. Fluids Struct. 28(1), 292–308 (2012)

    Article  Google Scholar 

  19. Dai, H.L.; Abdelkefi, A.; Wang, L.: Modeling and nonlinear dynamics of fluid-conveying risers under hybrid excitations. Int. J. Eng. Sci. 81, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dai, H.L.; Wang, L.; Qian, Q.; Ni, Q.: Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes. J. Fluids Struct. 39, 322–334 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.02.015

    Article  Google Scholar 

  21. Dai, H.L.; Wang, L.; Qian, Q.; Ni, Q.: Vortex-induced vibrations of pipes conveying pulsating fluid. Ocean Eng. 77, 12–22 (2014). https://doi.org/10.1016/j.oceaneng.2013.12.006

    Article  Google Scholar 

  22. Wang, L.; Dai, H.L.; Qian, Q.: Dynamics of simply supported fluid-conveying pipes with geometric imperfections. J. Fluids Struct. 29, 97–106 (2012). https://doi.org/10.1016/j.jfluidstructs.2011.12.013

    Article  Google Scholar 

  23. Liu, J.; Zhao, H.; Liu, Q.; He, Y.; Wang, G.; Wang, C.: Dynamic behavior of a deepwater hard suspension riser under emergency evacuation conditions. Ocean Eng. 150, 138–151 (2018). https://doi.org/10.1016/j.oceaneng.2017.12.050

    Article  Google Scholar 

  24. Zanganeh, H.; Srinil, N.: Three-dimensional VIV prediction model for a long flexible cylinder with axial dynamics and mean drag magnifications. J. Fluids Struct. 66, 127–146 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.07.004

    Article  Google Scholar 

  25. Song, J.-N.; Lu, L.; Teng, B.; Park, H.-I.; Tang, G.-Q.; Wu, H.: Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow. Ocean Eng. 38(11–12), 1308–1322 (2011). https://doi.org/10.1016/j.oceaneng.2011.05.020

    Article  Google Scholar 

  26. Yang, W.; Ai, Z.; Zhang, X.; Gou, R.; Chang, X.: Nonlinear three-dimensional dynamics of a marine viscoelastic riser subjected to uniform flow. Ocean Eng. 149, 38–52 (2018). https://doi.org/10.1016/j.oceaneng.2017.12.004

    Article  Google Scholar 

  27. Yang, W.; Ai, Z.; Zhang, X.; Chang, X.; Gou, R.: Nonlinear dynamics of three-dimensional vortex-induced vibration prediction model for a flexible fluid-conveying pipe. Int. J. Mech. Sci. 138–139, 99–109 (2018). https://doi.org/10.1016/j.ijmecsci.2018.02.005

    Article  Google Scholar 

  28. Chaplin, J.R.; Bearman, P.W.; Huarte, F.J.H.; Pattenden, R.J.: Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. J. Fluids Struct. 21(1), 3–24 (2005)

    Article  Google Scholar 

  29. Lie, H.; Kaasen, K.E.: Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow. J. Fluids Struct. 22(4), 557–575 (2006)

    Article  Google Scholar 

  30. Bourguet, R.; Karniadakis, G.E.; Triantafyllou, M.S.: Vortex-induced vibrations of a long flexible cylinder in shear flow. J. Fluid Mech. 677(677), 342–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bourguet, R.; Karniadakis, G.E.; Triantafyllou, M.S.: Multi-frequency vortex-induced vibrations of a long tensioned beam in linear and exponential shear flows. J. Fluids Struct. 41(8), 33–42 (2013)

    Article  Google Scholar 

  32. Holmes, S.; Oakley, O.H.; Constantinides, Y.: Simulation of riser VIV using fully three dimensional CFD simulations. In: 25th International Conference on Offshore Mechanics and Arctic Engineering, pp 563–570 (2006)

  33. Bourguet, R.; Karniadakis, G.E.; Triantafyllou, M.S.: Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow. J. Fluid Mech. 717(1), 361–375 (2013)

    Article  MATH  Google Scholar 

  34. Wang, E.; Xiao, Q.: Numerical simulation of vortex-induced vibration of a vertical riser in uniform and linearly sheared currents. Ocean Eng. 121, 492–515 (2016)

    Article  Google Scholar 

  35. Facchinetti, M.L.; de Langre, E.; Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(2), 123–140 (2004). https://doi.org/10.1016/j.jfluidstructs.2003.12.004

    Article  Google Scholar 

  36. Srinil, N.; Zanganeh, H.: Modelling of coupled cross-flow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators. Ocean Eng. 53, 83–97 (2012). https://doi.org/10.1016/j.oceaneng.2012.06.025

    Article  Google Scholar 

  37. Dahl, J.M.F.S.; Triantafyllou, M.S.; Oakley, O.H.: Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers. J. Fluid Mech. 643(3), 395–424 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, R., Zhang, X., Yang, W. et al. Nonlinear Dynamics of Three-Dimensional Prediction Model for a Flexible Riser Under Linearly Sheared Currents. Arab J Sci Eng 44, 829–844 (2019). https://doi.org/10.1007/s13369-018-3288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3288-x

Keywords

Navigation