Skip to main content

Advertisement

Log in

Characterization and Evaluation of Prudent Liquid Natural Rubber-Based Foam for Oil Spill Control Application

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Oil spills have caused adverse effects on the environment calling for more efficient oil removal techniques. This study highlights the use of liquid natural rubber (LNR) as the main raw material to produce competitive and effective oil absorbents. The absorbents were produced via vulcanization with the aid of foaming agents and were then characterized in terms of morphology and oil absorption capacity. The morphology analysis shows that the absorbents formed have irregular pores of 450–500 \(\upmu \)m in diameter. It was found that the oil absorption capacities of the absorbents decrease with increasing crosslinker concentration and when subjected to higher-viscosity oils. The sorption capacity of the absorbent is capped at 7.67 g g \(^{-1}\), while the reusability of the absorbents is up to 13 times. These LNR-based absorbents open up new opportunities for potential designs of better and renewable oil absorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, S.E.; Stone, J.; Demes, K.; Piscitelli, M.: Consequences of oil spills: a review and framework for informing planning. Ecol. Soc. 19(2), 26 (2014)

    Article  Google Scholar 

  2. Rizvi, A.; et al.: Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl. Mater. Interfaces 6, 21131–21140 (2014)

    Article  Google Scholar 

  3. Wang, F.; et al.: Superhydrophobic and superoleophilic miniature device for the collection of oils from water surfaces. J Phys Chem C 118(12), 6344–6351 (2014)

    Article  Google Scholar 

  4. Karakutuk, I.; Okay, O.: Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. React. Funct. Polym. 70(9), 585–595 (2010)

    Article  Google Scholar 

  5. Liu, Y.; et al.: Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl. Mater. Interfaces 5(20), 10018–10026 (2013)

    Article  Google Scholar 

  6. Choi, H.M.; Cloud, R.M.: Natural sorbents in oil spill cleanup. Environ. Sci. Technol. 26(4), 772–776 (1992)

    Article  Google Scholar 

  7. Wang, B.; et al.: Hollow carbon fibers derived from natural cotton as effective sorbents for oil spill cleanup. Ind. Eng. Chem. Res. 52(51), 18251–18261 (2013)

    Article  Google Scholar 

  8. Ibrahim, A.; Dahlan, M.: Thermoplastic natural rubber blends. Prog. Polym. Sci. 23(4), 665–706 (1998)

    Article  Google Scholar 

  9. Najib, N.; et al.: Effect of blowing agent concentration on cell morphology and impact properties of natural rubber foam. J. Phys. Sci. 20(1), 13–25 (2009)

    Google Scholar 

  10. Abdullah, I.: Liquid natural rubber: preparation and application. In: Ghiggino, K.P. (ed.) Progress in Pacific Polymer Science 3. Proceedings of the Third Pacific Polymer Conference, pp. 351–365. Springer, Berlin, Heidelberg (1994)

    Chapter  Google Scholar 

  11. Aprem, A.S.; Thomas, S.; Joseph, K.; Barkoula, N.M.; et al.: Sulphur vulcanisation of styrene butadiene rubber using new binary accelerator systems. J. Elastom. Plast. 35, 29–55 (2003)

    Article  Google Scholar 

  12. Harwood, L.M.; Moody, C.J.: Polymer chemistry. In: Particle Approach in Chemistry, pp. 1–246 (2003)

  13. Kawahara, S.; Chaikumpollert, O.; Sakurai, S.; Yamamoto, Y.; Akabori, K.: Crosslinking junctions of vulcanized natural rubber analyzed by solid-state NMR spectroscopy equipped with field-gradient-magic angle spinning probe. Polymer 50(7), 1626–1631 (2009)

    Article  Google Scholar 

  14. Ceylan, D.; et al.: Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ. Sci. Technol. 43(10), 3846–3852 (2009)

    Article  Google Scholar 

  15. Zhang, Z.; et al.: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26(8), 2659–2668 (2014)

    Article  Google Scholar 

  16. Barlkani, M.; Hepburn, C.: Determination of crosslink density by swelling in the castable polyurethane elastomer based on 1/4-cyclohexane diisocyanate and para-phenylene diisocyanate. Iran. J. Polym. Sci. Technol 1(1), 1–5 (1992)

    Google Scholar 

  17. Khalaf, A.; Yehia, A.; Ismail, M.; El-Sabbagh, H.: High performance oil resistant rubber. Open J. Org. Polym. Mater. 2(04), 89 (2012)

    Article  Google Scholar 

  18. Maharsia, R.; Gupta, N.; Jerro, H.D.: Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams. Mater. Sci. Eng. A 417(1), 249–258 (2006)

    Article  Google Scholar 

  19. Okay, O.; Durmaz, S.; Erman, B.: Solution cross-linked poly (isobutylene) gels: synthesis and swelling behavior. Macromolecules 33(13), 4822–4827 (2000)

    Article  Google Scholar 

  20. Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38(3), 377–399 (2005)

    Article  Google Scholar 

  21. Krumova, M.; Lopez, D.; Benavente, R.; Mijangos, C.; Perena, J.: Effect of crosslinking on the mechanical and thermal properties of poly (vinyl alcohol). Polymer 41(26), 9265–9272 (2000)

    Article  Google Scholar 

  22. He, J.; Zhang, Z.; Kristiansen, H.; Redford, K.; Fonnum, G.; Modahl, G.: Crosslinking effect on the deformation and fracture of monodisperse polystyrene-co-divinylbenzene particles. Express Polym. Lett. 7(4), 365–374 (2013)

    Article  Google Scholar 

  23. Hamed, G.R.: Materials and compounds. In: Engineering with Rubber: How to Design Rubber Components, 3rd edn, pp. 11–35 (1992)

    Chapter  Google Scholar 

  24. Bras, J.; Hassan, M.L.; Bruzesse, C.; Hassan, E.A.; El-Wakil, N.A.; Dufresne, A.: Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind. Crops Prod. 32(3), 627–633 (2010)

    Article  Google Scholar 

  25. Ismail, H.; Rozman, H.D.; Jaffri, R.M.; Ishak, Z.A.M.: Oil palm wood flour reinforced epoxidized natural rubber composites: the effect of filler content and size. Eur. Poly. J. 33(10), 1627–1632 (1997)

    Article  Google Scholar 

  26. Stans, M.H.: Bond Dissociation Energies in Simple Molecules, pp. 1–573 (1970)

  27. Duong, H.T.; Burford, R.P.: Effect of foam density, oil viscosity, and temperature on oil sorption behavior of polyurethane. J. Appl. Polym. Sci. 99(1), 360–367 (2006)

    Article  Google Scholar 

  28. Pan, Y.; et al.: Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill. ACS Appl. Mater. Interfaces 6(11), 8651–8659 (2014)

    Article  Google Scholar 

  29. Li, H.; Liu, L.; Yang, F.: Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar. Pollut. Bull. 64(8), 1648–1653 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by research Grants ERGS/1/2012/STG05/UKM/03/2, DLP-2014-019 and PRGS/1/2014/TK04/UKM/03/1 given by The National University of Malaysia (UKM) and Ministry of Education Malaysia (MoE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azwan Mat Lazim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, C.C., Musbah, N.D.L., Abdullah, I. et al. Characterization and Evaluation of Prudent Liquid Natural Rubber-Based Foam for Oil Spill Control Application. Arab J Sci Eng 43, 6097–6108 (2018). https://doi.org/10.1007/s13369-018-3256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3256-5

Keywords

Navigation