Skip to main content
Log in

Heat and Mass Transfer Enhancement for Falling Film Absorption Process in Vertical Plate Absorber by Adding Copper Nanoparticles

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper examined the effect of nanoparticles on the absorption of vapor into a liquid film of lithium bromide aqueous solution flowing down over a cooled vertical channel. For this, we realized a two-dimensional code which solves the governing equations using Comsol Multiphysics. In this model, the cooling water flows countercurrent to a solution of concentrated lithium bromide mixed with the copper nanoparticles. After the validation of the model, the effects of parameters such as Reynolds number, solid volume fraction of copper nanoparticles, inlet concentration and inlet temperature of solution on the performance of the absorption are presented and discussed. The important results indicate that the mass and heat transfer in binary nanofluids are enhanced more than that in base fluid and the efficiency of the nanofluid becomes higher to that of the base fluid for a lower Reynolds number and the inlet concentration and for a higher inlet temperature of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C :

Mass concentration, wt% LiBr

D :

Diffusion coefficient, \(\hbox {m}^{2}/\hbox {s}\)

Cp:

Specific heat at constant pressure, kJ/kg K

g :

Gravitational acceleration, \(\hbox {m/s}^{2}\)

\(H_\mathrm{abs}\) :

Enthalpy of absorption, J/Kg

\(\hbox {H}_{2}\hbox {O}\) :

Water

h :

Enthalpy, J/Kg

k :

Thermal conductivity, W/m K

L :

Length of plate, m

\(M_{\mathrm{surf}}\) :

Total mass transfer rate absorbed kg/m.s

\(m_{\mathrm{surf}}\) :

Absorption mass flux, \(\hbox {kg/m}^{2}\).s

Nu :

Nusselt number

Q :

Heat transfer rate, kW

\(R_{\mathrm{eff,abs}}\) :

Effective absorption ratio

Re :

Reynold’s number

T :

Temperature, K

P :

Pressure, Pa

u :

Velocity in x-direction, \(\hbox {m s}^{-1}\)

v :

Velocity in y-direction, \(\hbox {m s}^{-1}\)

x :

Coordinate in direction perpendicular to flow, m

y :

Coordinate in direction of flow, m

\(\phi \) :

Solid volume fraction of nanoparticles

\(\delta \) :

Liquid film thickness, m

\(\mu \) :

Dynamic viscosity, kg/m s

\(\rho \) :

Density, \(\hbox {kg/m}^{3}\)

\(\Gamma \) :

Liquid mass flow rate per unit width, kg/m.s

abs:

Absorption process

bulk:

Bulk solution

c:

Cooling water

f:

Fluid

in:

Inlet

nf:

Binary nanofluid

out:

Outlet

p:

Nanoparticles

surf:

Interface

W:

Wall

References

  1. Alexis, G.K.; Rogdakis, E.D.: Performance characteristics of two combined ejector-absorption cycles. Appl. Therm. Eng. 22(1), 97–106 (2002)

    Article  Google Scholar 

  2. Hafsia, N.B.; Chaouachi, B.; Gabsi, S.: A study of the coupled heat and mass transfer during absorption process in a spiral tubular absorber. Appl. Therm. Eng. 76, 37–46 (2015)

    Article  Google Scholar 

  3. Fu Lin, S.J.; Shigang, Z.: Experimental study on vertical vapor absorption into LiBr solution with and without additive. Appl. Therm. Eng. 31, 2850–2854 (2011)

    Article  Google Scholar 

  4. Kang, Y.T.; Kim, H.J.; Lee, K.I.: Heat and mass transfer enhancement of binary nanofluids for \(\text{ H }_{2}\text{ O }\)/LiBr falling film absorption process. Int. J. Refrig. 31(5), 850–856 (2008)

    Article  Google Scholar 

  5. Lee, J.K.; Koo, J.; Hong, H.; Kang, Y.T.: The effects of nanoparticles on absorption heat and mass transfer performance in \(\text{ NH }_{3}\)/\(\text{ H }_{2}\text{ O }\) binary nanofluids. Int. J. Refrig 33(2), 269–275 (2010)

    Article  Google Scholar 

  6. Ma, X.H.; Su, F.M.; Chen, J.B.: Heat and mass transfer enhancement of the bubble absorption for a binary nanofluid. J. Mech. Sci. Technol. 21(11), 1813–1818 (2007)

    Article  Google Scholar 

  7. Ma, X.H.; Su, F.; Chen, J.B.; Bai, T.; Han, Z.X.: Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid. Int. Commun. Heat Mass Transf. 36(7), 657–660 (2009)

    Article  Google Scholar 

  8. Sheng, W.; Wu, W.; Zhang, H.; Liu, H.; Hong, H.: Enhancing influence of \(\text{ Al }_{2}\text{ O }_{3}\) nanoparticles on ammonia bubble absorption process. J. Chem. Ind. Eng. 59(11), 2762–2767 (2008)

    Google Scholar 

  9. Liu, H.; Wu, W.D.; Sheng, W.; Hong, H.: Experimental study on enhancing ammonia bubble absorption by FeO nanofluid. Chem. Ind. Eng. Prog. 28(7), 1138–1141 (2009)

    Google Scholar 

  10. Wu, W.; Pang, C.; Sheng, W.; Cheng, S.; Wu, R.: Enhancement on \(\text{ NH }_{3}/\text{ H }_{2}\text{ O }\) bubble absorption in binary nanofluids by mono nano Ag. J. Chem. Ind. Eng. 61(5), 1112–1117 (2010)

    Google Scholar 

  11. Yang, L.; Du, K.; Niu, X.F.; Cheng, B.; Jiang, Y.F.: Experimental study on enhancement of ammonia-water falling film absorption by adding nanoparticles. Int. J. Refrig 34(3), 640–647 (2011)

    Article  Google Scholar 

  12. Kim, J.K.; Jung, J.Y.; Kang, Y.T.: The effect of nano-particles on the bubble absorption performance in a binary nanofluid. Int. J. Refrig 29, 22–29 (2006)

    Article  Google Scholar 

  13. Pang, C.; Wu, W.; Sheng, W.; Zhang, H.; Kang, Y.T.: Mass transfer enhancement by binary nanofluids (\(\text{ NH }_{3}/\text{ H }_{2}\text{ O }\)+Ag nanoparticles) for bubble absorption process. Int. J. Refrig 35, 2240–2247 (2012)

    Article  Google Scholar 

  14. Oronel, C.; Amaris, C.; Bourouis, M.; Vallès, M.: Heat and mass transfer in a bubble plate absorber with \(\text{ NH }_{3}/\text{ LiNO }_{3}\) and \(\text{ NH }_{3}\)/(\(\text{ LiNO }_{3}\)-\(\text{ H }_{2}\text{ O }\)) mixtures. Int. J. Therm. Sci. 63, 105–114 (2013)

    Article  Google Scholar 

  15. Nusselt, W.D.: Oberflachenkondensation des wasserdampfes. ZeitschrVer Deutsch. 60, 541–546 (1916)

    Google Scholar 

  16. McNeely, L.A.: Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 85, 413–434 (1979)

    Google Scholar 

  17. Ben Hamida, M.B.; Charrada, K.: Natural convection heat transfer in an enclosure filled with an ethylene glycol-copper nanofluid under magnetic fields. Numer. Heat Transf. Part A Appl. Int. J. Comput. Methodol. 67, 902–920 (2014)

    Article  Google Scholar 

  18. Bock, C.P.; Young, I.C.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998)

    Article  Google Scholar 

  19. Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(19), 3701–3707 (2000)

    Article  MATH  Google Scholar 

  20. Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Ser. A. 20(3), 385–420 (1904)

    Article  MATH  Google Scholar 

  21. Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)

    Article  Google Scholar 

  22. Yoon, J.; Phan, T.; Moon, C.; Bansal, P.: Numerical study on heat and mass transfer characteristic of plate absorber. Appl. Therm. Eng. 25, 2219–2235 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bechir Ben Hamida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hamida, M.B., Belghaieb, J. & Hajji, N. Heat and Mass Transfer Enhancement for Falling Film Absorption Process in Vertical Plate Absorber by Adding Copper Nanoparticles. Arab J Sci Eng 43, 4991–5001 (2018). https://doi.org/10.1007/s13369-018-3252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3252-9

Keywords

Navigation