Arabian Journal for Science and Engineering

, Volume 43, Issue 9, pp 4991–5001 | Cite as

Heat and Mass Transfer Enhancement for Falling Film Absorption Process in Vertical Plate Absorber by Adding Copper Nanoparticles

  • Mohamed Bechir Ben Hamida
  • Jalel Belghaieb
  • Nejib Hajji
Research Article - Mechanical Engineering


This paper examined the effect of nanoparticles on the absorption of vapor into a liquid film of lithium bromide aqueous solution flowing down over a cooled vertical channel. For this, we realized a two-dimensional code which solves the governing equations using Comsol Multiphysics. In this model, the cooling water flows countercurrent to a solution of concentrated lithium bromide mixed with the copper nanoparticles. After the validation of the model, the effects of parameters such as Reynolds number, solid volume fraction of copper nanoparticles, inlet concentration and inlet temperature of solution on the performance of the absorption are presented and discussed. The important results indicate that the mass and heat transfer in binary nanofluids are enhanced more than that in base fluid and the efficiency of the nanofluid becomes higher to that of the base fluid for a lower Reynolds number and the inlet concentration and for a higher inlet temperature of solution.


Heat transfer Mass transfer Enhancement Absorption process Falling film Water-Lithium bromide Copper nanoparticles Comsol Multiphysics 

List of Symbols


Mass concentration, wt% LiBr


Diffusion coefficient, \(\hbox {m}^{2}/\hbox {s}\)


Specific heat at constant pressure, kJ/kg K


Gravitational acceleration, \(\hbox {m/s}^{2}\)


Enthalpy of absorption, J/Kg

\(\hbox {H}_{2}\hbox {O}\)



Enthalpy, J/Kg


Thermal conductivity, W/m K


Length of plate, m


Total mass transfer rate absorbed kg/m.s


Absorption mass flux, \(\hbox {kg/m}^{2}\).s


Nusselt number


Heat transfer rate, kW


Effective absorption ratio


Reynold’s number


Temperature, K


Pressure, Pa


Velocity in x-direction, \(\hbox {m s}^{-1}\)


Velocity in y-direction, \(\hbox {m s}^{-1}\)


Coordinate in direction perpendicular to flow, m


Coordinate in direction of flow, m

Greek symbols

\(\phi \)

Solid volume fraction of nanoparticles

\(\delta \)

Liquid film thickness, m

\(\mu \)

Dynamic viscosity, kg/m s

\(\rho \)

Density, \(\hbox {kg/m}^{3}\)

\(\Gamma \)

Liquid mass flow rate per unit width, kg/m.s



Absorption process


Bulk solution


Cooling water






Binary nanofluid










Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexis, G.K.; Rogdakis, E.D.: Performance characteristics of two combined ejector-absorption cycles. Appl. Therm. Eng. 22(1), 97–106 (2002)CrossRefGoogle Scholar
  2. 2.
    Hafsia, N.B.; Chaouachi, B.; Gabsi, S.: A study of the coupled heat and mass transfer during absorption process in a spiral tubular absorber. Appl. Therm. Eng. 76, 37–46 (2015)CrossRefGoogle Scholar
  3. 3.
    Fu Lin, S.J.; Shigang, Z.: Experimental study on vertical vapor absorption into LiBr solution with and without additive. Appl. Therm. Eng. 31, 2850–2854 (2011)CrossRefGoogle Scholar
  4. 4.
    Kang, Y.T.; Kim, H.J.; Lee, K.I.: Heat and mass transfer enhancement of binary nanofluids for \(\text{ H }_{2}\text{ O }\)/LiBr falling film absorption process. Int. J. Refrig. 31(5), 850–856 (2008)CrossRefGoogle Scholar
  5. 5.
    Lee, J.K.; Koo, J.; Hong, H.; Kang, Y.T.: The effects of nanoparticles on absorption heat and mass transfer performance in \(\text{ NH }_{3}\)/\(\text{ H }_{2}\text{ O }\) binary nanofluids. Int. J. Refrig 33(2), 269–275 (2010)CrossRefGoogle Scholar
  6. 6.
    Ma, X.H.; Su, F.M.; Chen, J.B.: Heat and mass transfer enhancement of the bubble absorption for a binary nanofluid. J. Mech. Sci. Technol. 21(11), 1813–1818 (2007)CrossRefGoogle Scholar
  7. 7.
    Ma, X.H.; Su, F.; Chen, J.B.; Bai, T.; Han, Z.X.: Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid. Int. Commun. Heat Mass Transf. 36(7), 657–660 (2009)CrossRefGoogle Scholar
  8. 8.
    Sheng, W.; Wu, W.; Zhang, H.; Liu, H.; Hong, H.: Enhancing influence of \(\text{ Al }_{2}\text{ O }_{3}\) nanoparticles on ammonia bubble absorption process. J. Chem. Ind. Eng. 59(11), 2762–2767 (2008)Google Scholar
  9. 9.
    Liu, H.; Wu, W.D.; Sheng, W.; Hong, H.: Experimental study on enhancing ammonia bubble absorption by FeO nanofluid. Chem. Ind. Eng. Prog. 28(7), 1138–1141 (2009)Google Scholar
  10. 10.
    Wu, W.; Pang, C.; Sheng, W.; Cheng, S.; Wu, R.: Enhancement on \(\text{ NH }_{3}/\text{ H }_{2}\text{ O }\) bubble absorption in binary nanofluids by mono nano Ag. J. Chem. Ind. Eng. 61(5), 1112–1117 (2010)Google Scholar
  11. 11.
    Yang, L.; Du, K.; Niu, X.F.; Cheng, B.; Jiang, Y.F.: Experimental study on enhancement of ammonia-water falling film absorption by adding nanoparticles. Int. J. Refrig 34(3), 640–647 (2011)CrossRefGoogle Scholar
  12. 12.
    Kim, J.K.; Jung, J.Y.; Kang, Y.T.: The effect of nano-particles on the bubble absorption performance in a binary nanofluid. Int. J. Refrig 29, 22–29 (2006)CrossRefGoogle Scholar
  13. 13.
    Pang, C.; Wu, W.; Sheng, W.; Zhang, H.; Kang, Y.T.: Mass transfer enhancement by binary nanofluids (\(\text{ NH }_{3}/\text{ H }_{2}\text{ O }\)+Ag nanoparticles) for bubble absorption process. Int. J. Refrig 35, 2240–2247 (2012)CrossRefGoogle Scholar
  14. 14.
    Oronel, C.; Amaris, C.; Bourouis, M.; Vallès, M.: Heat and mass transfer in a bubble plate absorber with \(\text{ NH }_{3}/\text{ LiNO }_{3}\) and \(\text{ NH }_{3}\)/(\(\text{ LiNO }_{3}\)-\(\text{ H }_{2}\text{ O }\)) mixtures. Int. J. Therm. Sci. 63, 105–114 (2013)CrossRefGoogle Scholar
  15. 15.
    Nusselt, W.D.: Oberflachenkondensation des wasserdampfes. ZeitschrVer Deutsch. 60, 541–546 (1916)Google Scholar
  16. 16.
    McNeely, L.A.: Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 85, 413–434 (1979)Google Scholar
  17. 17.
    Ben Hamida, M.B.; Charrada, K.: Natural convection heat transfer in an enclosure filled with an ethylene glycol-copper nanofluid under magnetic fields. Numer. Heat Transf. Part A Appl. Int. J. Comput. Methodol. 67, 902–920 (2014)CrossRefGoogle Scholar
  18. 18.
    Bock, C.P.; Young, I.C.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998)CrossRefGoogle Scholar
  19. 19.
    Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(19), 3701–3707 (2000)CrossRefzbMATHGoogle Scholar
  20. 20.
    Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Ser. A. 20(3), 385–420 (1904)CrossRefzbMATHGoogle Scholar
  21. 21.
    Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)CrossRefGoogle Scholar
  22. 22.
    Yoon, J.; Phan, T.; Moon, C.; Bansal, P.: Numerical study on heat and mass transfer characteristic of plate absorber. Appl. Therm. Eng. 25, 2219–2235 (2005)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Mohamed Bechir Ben Hamida
    • 1
  • Jalel Belghaieb
    • 2
    • 3
  • Nejib Hajji
    • 2
    • 3
  1. 1.Department of Physics, High School of Sciences and Technology of Hammam Sousse (ESSTHS)University of SousseSousseTunisia
  2. 2.Department of Process Engineering, National School of Engineers of Gabes (ENIG)University of GabesGabesTunisia
  3. 3.Research Unit of Energy and Environment Ionized, National School of Engineers of Gabes (ENIG)University of GabesGabesTunisia

Personalised recommendations