Skip to main content

Advertisement

Log in

Bioethanol Production from Water Hyacinth Hydrolysate by Candida tropicalis Y-26

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Biofuel production has attracted much attention in the last few decades. Much effort has been applied to decrease the production cost of bioethanol by using agricultural waste materials. Saccharification of lignocellulosic agricultural waste materials increases the amount of available sugars and thus reduces bioethanol production costs. Here, about 14 g/l of bioethanol (185 mg/g of dry material) was produced by Candida tropicalis Y-26 using production medium with water hyacinth hydrolysate as the sole carbon source. This hydrolysate was produced, after screening and mathematical modeling, by a combination of Aspergillus terreus F-98 and acid hydrolysis \((\hbox {H}_{2}\hbox {SO}_{4})\) treatments to give 409 mg/g total reducing sugars. The use of a combination of A. terreus F-98 and acid hydrolysis with \(\hbox {H}_{2}\hbox {SO}_{4}\), 4.66% (v/v); water hyacinth biomass, 7.56% (w/v); reaction temperature, \(119.27\,^{\circ }\hbox {C}\); and reaction time, 16.11 min was optimal for the saccharification of water hyacinth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rady, A.H.; Younis, N.A.; Sidkey, N.M.; Ouda, S.M.: Requirements of Saccharomyces cerevisiae, Y10 for bioconversion of lignocellulosic substrates to ethanol under simultaneous saccharification and fermentation processes. Arab. J. Nucl. Sci. Appl. 39(1), 251–265 (2006)

    Google Scholar 

  2. Madian, H.R.; El-Gendy, NSh; Farahat, L.A.; Abo-State, M.A.; Ragab, A.M.E.: Fungal hydrolysis and saccharification of rice straw and ethanol production. Biosci. Biotechnol. Res. Asia 9(2), 467–476 (2012)

    Article  Google Scholar 

  3. Hasunuma, T.; Hori, Y.; Sakamoto, T.; Ochiai, M.; Hatanaka, H.; Kondo, A.: Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor- tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses. Microb. Cell Factories 13, 145–157 (2014)

    Article  Google Scholar 

  4. El-Gendy, N.S.; Madian, H.R.; Nasser, H.; Abu Amr, S.S.: Response surface optimization of the thermal acid pretreatment of Sugar Beet Pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae. Recent Pat. Biotechnol. 9(1), 39–49 (2015). https://doi.org/10.2174/1872208309666150916092450

    Article  Google Scholar 

  5. Sindhu, R.; Binod, P.; Pandey, A.: Biological pretreatment of lignocellulosic biomass: an overview. Bioresour. Technol. 199, 76–82 (2016). https://doi.org/10.1016/j.biortech.2015.08.030

    Article  Google Scholar 

  6. Kumar, A.; Singh, L.K.; Ghosh, S.: Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour. Technol. 100(13), 3293–3297 (2009). https://doi.org/10.1016/j.biortech.2009.02.023

    Article  Google Scholar 

  7. Ma, F.; Yang, N.; Xu, C.; Yu, H.; Wu, J.; Zhang, X.: Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour. Technol. 101(24), 9600–9604 (2010)

    Article  Google Scholar 

  8. Rezania, S.; Din, M.F.; Taib, S.M.; Dahalan, F.A.; Songip, A.R.; Singh, L.; Kamyab, H.: The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. Int. J. Phytoremediat. 18(7), 679–85 (2016). https://doi.org/10.1080/15226514.2015.1130018

    Article  Google Scholar 

  9. Lu, X.; Kruatrachue, M.; Pokethitiyook, P.; Homyok, K.: Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci. Asia 30, 93–103 (2004)

    Article  Google Scholar 

  10. Gajalakshmi, S.; Abbasi, S.A.: Effect of the application of water hyacinth compost/vermicompost on the growth and flowering of Crossandra undulaefolia, and on several vegetables. Bioresour. Technol. 85, 197–9 (2002)

    Article  Google Scholar 

  11. Gunnarsson, C.C.; Petersen, C.M.: Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag. (Oxf.) 27(1), 117–129 (2007)

    Article  Google Scholar 

  12. Amriani, F.; Salim, F.A.; Iskandinata, I.; Khumsupan, D.; Barta, Z.: Physical and biophysical pretreatment of water hyacinth biomass for cellulase enzyme production. Chem. Biochem. Eng. Q. 30(2), 237–244 (2016). https://doi.org/10.15255/CABEQ.2015.2284

    Article  Google Scholar 

  13. Pothiraj, C.; Arumugam, R.; Gobinath, R.M.: Production of cellulase in submerged fermentation using water hyacinth as carbon source and reutilization of spent fungal biomass for dye degradation. Int. J. Curr. Microbiol. Appl. Sci. 5(10), 99–108 (2016)

    Article  Google Scholar 

  14. Mishima, D.; Kuniki, M.; Sei, K.; Soda, S.; Ike, M.; Fujita, M.: Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol. 99(7), 2495–2500 (2008). https://doi.org/10.1016/j.biortech.2007.04.056

    Article  Google Scholar 

  15. Reales-Alfaro, J.G.; Trujillo, L.T.; Arzuaga, G.; Castaño, H.; Polo, A.: Acid hydrolysis of water hyacinth to obtain fermentable sugars. CT&F Cienc. Tecnol. Futuro 5(2), 101–112 (2013)

    Article  Google Scholar 

  16. Randive, V.; Belhekar, S.; Paigude, S.: Production of bioethanol from Eichhornia crassipes (water hyacinth). Int. J. Curr. Microbiol. Appl. Sci. Special Issue-2, 399–406 (2015)

  17. Nigam, J.N.: Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97(2), 107–116 (2002)

    Article  Google Scholar 

  18. Das, S.; Bhattacharya, A.; Haldar, s; Ganguly, A.; Gu, Sai; Ting, Y.P.; Chatterjee, P.K.: Optimization of enzymatic scarification of water hyacinth biomass for bio-ethanol: comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 3, 17–28 (2015)

    Google Scholar 

  19. Taherzadeh, M.J.; Gustafsson, L.; Niklasson, C.; Lidén, G.: Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J. Biosci. Bioeng. 87(2), 169–174 (1999). https://doi.org/10.1016/S1389-1723(99)89007-0

    Article  Google Scholar 

  20. Larsson, S.; Quintane-Sainz, A.; Reimann, A.; Nilverbrant, N.; Jonsson, L.J.: Influence of lignocellulose derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 84(86), 617–632 (2000)

    Article  Google Scholar 

  21. Zhang, X.Y.; Yu, H.B.; Huang, H.Y.; Liu, Y.X.: Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior. Biodegrad. 60, 159–164 (2007)

    Article  Google Scholar 

  22. Abo-State, M.A.; Ragab, A.M.E.; El-Gendy, N.Sh.; Farahat, L.A.; Madian, H.R.: Effect of different pretreatments on Egyptian sugar-cane bagasse saccharification and bioethanol production. Egypt. J. Petrol. 22, 161–167 (2013)

  23. Miller, G.L.: Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  24. Han, L.; Feng, J.; Zhang, S.; Ma, Z.; Wang, Y.; Zhang, X.: Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz. J. Microbiol. 43(1), 53–61 (2012)

    Article  Google Scholar 

  25. Ganguly, A.; Halder, S.; Laha, A.; Saha, N.; Chatterjee, P.K.; Dey, A.: Effect of alkali pretreatment on water hyacinth biomass for production of ethanol. Adv. Chem. Eng. Res. 2(2), 40–44 (2013)

    Google Scholar 

  26. Yan, J.; Wei, Z.; Wang, Q.; He, M.; Li, S.; Irbis, C.: Bioethanol production from sodium hydroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour. Technol. 193, 103–106 (2015). https://doi.org/10.1016/j.biortech.2015.06.069

    Article  Google Scholar 

  27. Rezania, S.; Din, M.F.M.; Kamaruddin, S.F.; Taib, S.M.; Singh, L.; Yong, E.L.; Dahalan, F.A.: Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy 111, 768–773 (2016). https://doi.org/10.1016/j.energy.2016.06.026

    Article  Google Scholar 

  28. Feng, W.; Xiao, K.; Zhou, W.; Zhu, D.; Zhou, Y.; Yuan, Y.; Xiao, N.; Wan, X.; Hua, Y.; Zhao, J.: Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour. Technol. 223, 287–295 (2017). https://doi.org/10.1016/j.biortech.2016.10.047

    Article  Google Scholar 

  29. Rezania, S.; Din, M.F.M.; Mohamad, S.; Sohaili, J.; Taib, S.M.; Yusof, M.; kamyab, H.; Darajeh, N.; Ahsan, A.: Ethanol from water hyacinth. Bioresources 12(1), 2108–2124 (2017)

    Google Scholar 

  30. Yu, J.; Zhang, J.B.; He, J.; Liu, Z.D.; Yu, Z.N.: Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour. Technol. 100, 903–908 (2009)

    Article  Google Scholar 

  31. Singh, P.; Suman, A.; Tiwari, P.; Arya, N.; Gaur, A.; Shrivastava, A.K.: Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J. Microbiol. Biotechnol. 24, 667–673 (2008)

    Article  Google Scholar 

  32. Cheetham, N.W.H.; Sirimanne, P.; Day, W.R.: High-performance liquid chromatographic separation of carbohydrate oligomers. J. Chromatogr. 207(3), 439–444 (1981)

    Article  Google Scholar 

  33. Abraham, M.; Kurup, M.: Bioconversion of tapioca (Manihot esculenta) waste and water hyacinth (Eichhornia crassipes)-Influence of various physic-chemical factors. J. Ferment. Bioeng. 82(3), 259–263 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Elazzazy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madian, H.R., Sidkey, N.M., Abo Elsoud, M.M. et al. Bioethanol Production from Water Hyacinth Hydrolysate by Candida tropicalis Y-26. Arab J Sci Eng 44, 33–41 (2019). https://doi.org/10.1007/s13369-018-3247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3247-6

Keywords

Navigation