A New Blind Medical Image Watermarking Based on Weber Descriptors and Arnold Chaotic Map

Research Article - Computer Engineering and Computer Science
  • 13 Downloads

Abstract

Protecting the personal patient’s information in distributed health infrastructures seems to be a crucial task. As a solution of this issue, image watermarking is widely used to secure and prevent the content alteration. Moreover, it is necessary to find a new blind watermarking technique way that could decrease the latency and preserve the quality of medical images. This paper presents a new watermarking technique for medical image. Our technique consists in combining the DCT transform, Weber descriptors (WDs) and Arnold chaotic map. This combination brings three significant steps. First, the watermark image is scrambled using Arnold chaotic map. Second, the DCT is performed on each medical image block, and the watermark data are embedded in the DCT middle- band coefficients of each block. Finally, a new embedding and extracting technique is proposed, based on WDs without any loss by selecting the right coefficients. We improve the robustness of the proposed algorithm against several scenarios of attacks such as noising, filtering and JPEG compression. The obtained results make our algorithm eligible to be practicable.

Keywords

DCT Weber descriptors DICOM Medical image watermarking Blind Robustness Attacks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Su, Q.; Niu, Y.; Wang, Q.; Sheng, G.: A blind color image watermarking based on DC component in the spatial domain. Opt. Int. J. Light Electron Optics 124(23), 6255–6260 (2013)CrossRefGoogle Scholar
  2. 2.
    Benoraira, A.; Benmahammed, K.; Boucenna, N.: Blind image watermarking technique based on differential embedding in DWT and DCT domains. EURASIP J. Adv. Signal Process. 1, 2015 (2015)Google Scholar
  3. 3.
    Rahmani, H.; Mortezaei, R.; Ebrahimi, M.M.: A new robust watermarking scheme to increase image security. EURASIP J. Adv. Signal Process. 2010(1), 428183 (2010)CrossRefMATHGoogle Scholar
  4. 4.
    Liu, H.; Xiao, D.; Zhang, R.; Zhang, Y.; Bai, S.: Robust and hierarchical watermarking of encrypted images based on compressive sensing. Signal Process. Image Commun. 45, 41–51 (2016)CrossRefGoogle Scholar
  5. 5.
    Wang, X.; Liu, Y.; Xu, H.; Wang, A.; Yang, H.: Blind optimum detector for robust image watermarking in nonsubsampled shearlet domain. Inf. Sci. 372, 634–654 (2016)CrossRefGoogle Scholar
  6. 6.
    Kamran, K.A.; Malik, S.: A high capacity reversible watermarking approach for authenticating images: exploiting down-sampling, histogram processing, and block selection. Inf. Sci. 256, 162–183 (2014)CrossRefGoogle Scholar
  7. 7.
    Lakshmi Prasad, K.; Malleswara Rao, T.; Kannan, V.: A novel and hybrid secure digital image watermarking framework through sc-LWT-SVD. Indian J. Sci. Technol. 9(23), 1–10 (2016)CrossRefGoogle Scholar
  8. 8.
    Wang, C.; Wang, X.; Zhang, C.; Xia, Z.: Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution. Signal Process. 134, 197–208 (2017)CrossRefGoogle Scholar
  9. 9.
    Ghosal, S.; Mandal, J.: Binomial transform based fragile watermarking for image authentication. J. Inf. Secur. Appl. 19(4–5), 272–281 (2014)Google Scholar
  10. 10.
    Preda, R.: Semi-fragile watermarking for image authentication with sensitive tamper localization in the wavelet domain. Measurement 46(1), 367–373 (2013)CrossRefGoogle Scholar
  11. 11.
    Panchal, U.H.; Srivastava, R.: A comprehensive survey on digital image watermarking techniques. In: Proceeding of the 5th International Conference on Communication Systems and Network Technologies (CSNT), IEEE, pp. 591–595, 4–6 April 2015Google Scholar
  12. 12.
    Radharani, S.; Valarmathi, D.: A study on watermarking schemes for image authentication. Int. J. Comput. Appl. 2(4), 24–32 (2010)Google Scholar
  13. 13.
    Das, C.; Panigrahi, S.; Sharma, V.; Mahapatra, K.: A novel blind robust image watermarking in DCT domain using inter-block coefficient correlation. AEU Int. J. Electron. Commun. 68(3), 244–253 (2014)CrossRefGoogle Scholar
  14. 14.
    Mohammadi, S.: A semi blind watermarking algorithm for color image using chaotic map. In: Proceeding of the 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), IEEE, pp. 106–110. Iran University of Science and Technology, Tehran, Iran, 5–6 November 2015Google Scholar
  15. 15.
    Daraee, F.; Mozaffari, S.: Watermarking in binary document images using fractal codes. Pattern Recogn. Lett. 35, 120–129 (2014)CrossRefGoogle Scholar
  16. 16.
    Cooley, J.W.; Lewis, P.A.W.; Welch, P.D.: The finite Fourier transform. IEEE Trans. Audio Electroacoust. AU 17(2), 77 (1969)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Makhoul, J.: A fast cosine transform in one and two dimensions. IEEE Trans. Acoust. Speech Signal Process. ASSP 28(1), 27 (1980)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Heil, C.; Walnut, D.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kabra, R.G.; Agrawal, S.S.: Robust embedding of image watermark using LWT and SVD. In: Proceeding of the International Conference on Communication and Signal Processing, IEEE, India, pp. 1968–1972, 6–8 April 2016Google Scholar
  20. 20.
    Mousavi, S.; Naghsh, A.; Abu-Bakar, S.: Watermarking techniques used in medical images: a survey. J. Digit. Imaging 27(6), 714–729 (2014)CrossRefGoogle Scholar
  21. 21.
    Dey, N.; Karaa, W.B.; Shakraborty, S.; Banerjee, S.; Salem, M.A.M.; Azar, A.T.: Image mining framework and techniques: a review. Int. J. Image Min. 1(1), 45–64 (2015)CrossRefGoogle Scholar
  22. 22.
    Zahradnikova, B.; Duchovicova, S.; Schreiber, P.: Image mining: review and new challenges. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 6(7), 367–373 (2015)Google Scholar
  23. 23.
    Várkonyi-Kóczy, A.R.: New advances in digital image processing. Memet. Comput. 2, 283–304 (2010)CrossRefGoogle Scholar
  24. 24.
    Martinez, J.M.; Koenen, R.; Pereira, F.: MPEG-7: the generic multimedia content description standard, part 1. MultiMed. IEEE 9(2), 78–87 (2002)CrossRefGoogle Scholar
  25. 25.
    Khan, A.; Siddiqa, A.; Munib, S.; Malik, S.: A recent survey of reversible watermarking techniques. Inf. Sci. 279, 251–272 (2014)CrossRefGoogle Scholar
  26. 26.
    Mishra, N.; Silakari, D.S.: Image mining in the context of content based image retrieval: a perspective. IJCSI Int. J. Comput. Sci. Issues 9(4), 98–107 (2012)Google Scholar
  27. 27.
    Rahmani, M.; Akbarizadeh, G.: Unsupervised feature learning based on sparse coding and spectral clustering for segmentation of synthetic aperture radar images. IET Comput. Vis. 9(5), 629–638 (2015)CrossRefGoogle Scholar
  28. 28.
    Akbarizadeh, G.; Moghaddam, A.E.: Detection of lung nodules in CT scans based on unsupervised feature learning and fuzzy inference. J. Med. Imaging Health Inf. 6(2), 477–483 (2016)CrossRefGoogle Scholar
  29. 29.
    Akbarizadeh, G.: Segmentation of SAR satellite images using cellular learning automata and adaptive chains. J. Remote Sens. Technol. 1(2), 44–51 (2013)CrossRefGoogle Scholar
  30. 30.
    Akbarizadeh, G.; Rahmani, M.: Efficient combination of texture and color features in a new spectral clustering method for PolSAR image segmentation. Natl. Acad. Sci. Lett. 40(2), 117–120 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Modava, M.; Akbarizadeh, G.: A level set based method for coastline detection of SAR images. In: Proceedings of 3rd International on Pattern Recognition and Image Analysis (IPRIA) (2017)Google Scholar
  32. 32.
    Andekah, Z.A.; Naderan, M.; Akbarizadeh, G.: Semi-supervised hyperspectral image classification using spatial-spectral features and superpixel-based sparse codes. In: Iranian Conference on Electrical Engineering (ICEE), pp. 2229–2234 (2017)Google Scholar
  33. 33.
    Ahmadi, N.; Akbarizadeh, G.: Hybrid robust iris recognition approach using iris image pre-processing, two-dimensional Gabor features and multi-layer perceptron neural network/PSO. IET Biom. 7(2), 153–162 (2018)CrossRefGoogle Scholar
  34. 34.
    Faraji, Z.; Akbarizadeh, G.: A new computer vision algorithm for classification of POLSAR images. In: Proceedings of 7th Conference on Information and Knowledge Technology (IKT), pp. 1–4 (2015)Google Scholar
  35. 35.
    Akbarizadeh, G.; Rahmani, M.: A new ensemble clustering method for PolSAR image segmentation. In: Proceedings of the 7th Conference on Information and Knowledge Technology (IKT), pp. 1–4 (2015)Google Scholar
  36. 36.
    Akbarizadeh, G.; Tirandaz, Z.; Kooshesh, M.: A new curvelet-based texture classification approach for land cover recognition of SAR satellite images. Malays. J. Comput. Sci. 27(3), 218–239 (2014)Google Scholar
  37. 37.
    Laouamer, L.; Tayan, O.: A semi-blind robust DCT watermarking approach for sensitive text images. Arab. J. Sci. Eng. 40(4), 1097–1109 (2015)CrossRefGoogle Scholar
  38. 38.
    Mansoori, E.; Soltani, S.: A new semi-blind watermarking algorithm using ordered Hadamard transform. Imaging Sci. J. 64(4), 204–214 (2016)CrossRefGoogle Scholar
  39. 39.
    Roy, S.; Pal, A.: A blind DCT based color watermarking algorithm for embedding multiple watermarks. AEU Int. J. Electron. Commun. 72, 149–161 (2017)CrossRefGoogle Scholar
  40. 40.
    Wang, J.; Liu, Y.: Schur decomposition based robust watermarking algorithm in contourlet domain. In: Proceeding of the International Conference on Cloud Computing and Security (ICCCS), Part I, pp. 114–124. Springer (2016)Google Scholar
  41. 41.
    Singh, D.; Singh, S.: DWT-SVD and DCT based robust and blind watermarking scheme for copyright protection. Multimed. Tools Appl. 76, 13001 (2016)CrossRefGoogle Scholar
  42. 42.
    Zhao, J.; Xu, W.; Zhang, S.; Fan, S.; Zhang, W.: A strong robust zero-watermarking scheme based on shearlets high ability for capturing directional features. Math. Probl. Eng. 2016, 1–11 (2016)Google Scholar
  43. 43.
    Singh, A.; Dave, M.; Mohan, A.: Hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimed. Tools Appl. 75(14), 8381–8401 (2015)CrossRefGoogle Scholar
  44. 44.
    Ghadi, M.; Laouamer, L.; Nana, L.; Pascu, A.: A novel zero-watermarking approach of medical images based on Jacobian matrix model. Secur. Commun. Netw. 9, 1–16 (2016)CrossRefGoogle Scholar
  45. 45.
    Awrangjeb, M.; Kankanhalli, M.S.: Reversible watermarking using a perceptual model. SPIE J. Electron. Imaging 14(1), 1–8 (2005)Google Scholar
  46. 46.
    Awrangjeb, M.; Lu, G.: A robust content-based watermarking technique. In: Proceedings of International Workshop on Multimedia Signal Processing (MMSP 2008), Queensland, Australia, pp. 563–568, 8–10 October 2008Google Scholar
  47. 47.
    Awrangjeb, M.; Hossain, M. S.: A hierarchical security solution for medical image transmissions. In: Proceedings of the International Conference on Computer and Information Technology (ICCIT 2004), Bangladesh, pp. 435–441, December 2004Google Scholar
  48. 48.
    Rani, A.; Raman, B.; Kumar, S.: A robust watermarking scheme exploiting balanced neural tree for rightful ownership protection. Multimed. Tools Appl. 72(3), 2225–2248 (2013)CrossRefGoogle Scholar
  49. 49.
    Abdelhakim, A.; Saleh, H.; Nassar, A.: A quality guaranteed robust image watermarking optimization with artificial bee colony. Expert Syst. Appl. 72, 317–326 (2017)CrossRefGoogle Scholar
  50. 50.
    Moghaddam, M.; Nemati, N.: A robust color image watermarking technique using modified imperialist competitive algorithm. Forensic Sci. Int. 233(1–3), 193–200 (2013)CrossRefGoogle Scholar
  51. 51.
    AL-Nabhani, Y.; Jalab, H.; Wahid, A.; Noor, R.: Robust watermarking algorithm for digital images using discrete wavelet and probabilistic neural network. J. King Saud Univ. Comput. Inf. Sci. 27(4), 393–401 (2015)Google Scholar
  52. 52.
    Arsalan, M.; Qureshi, A.; Khan, A.; Rajarajan, M.: Protection of medical images and patient related information in healthcare: using an intelligent and reversible watermarking technique. Appl. Soft Comput. 51, 168–179 (2017)CrossRefGoogle Scholar
  53. 53.
    Chen, J.; Shan, S.; Zhao, G.; Chen, X.; Gao, W.; Pietikäinen, M.: A robust descriptor based on Weber’s law. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7 (2008)Google Scholar
  54. 54.
    Lazoff, M.; Cadogan, M.: Life in the Fastlane, LITFL review 236. http://lifeinthefastlane.com/resources/radiology-database/
  55. 55.
    Petitcolas, F.: Watermarking stirmark. http://w.petitcolas.net/fabien/watermarking/stirmark/ (2012)

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.LRSD Lab, Computer Science DepartmentUniversity of SETIF-1SétifAlgeria
  2. 2.Lab-STICC (UMR CNRS 6285)University of Bretagne OccidentaleBrest CedexFrance

Personalised recommendations