Skip to main content
Log in

Biodiesel Production in Tubular Microreactor: Optimization by Response Surface Methodology

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Transesterification of crude cottonseed oil with methanol in the presence of catalyst (NaOH) in tubular microreactor has been investigated experimentally. The transesterification reaction was performed in a silicon tube of 0.8 mm inner diameter, mounted in serpentine manner configuration on an acrylic sheet. Influence of process variables such as reaction temperature \((35{-}45\,{^{\circ }}\hbox {C})\), NaOH concentration (0.5–1.5 wt%) and oil/methanol molar ratio (1:7–1:9) on fatty acid methyl ester (FAME) was studied. In order to further improve biodiesel yield, an experimental design was employed using the Box–Behnken method and analysis of variance. The %FAME was calculated by gas chromatography using methyl arachidate as an internal standard. Fourier transform infrared spectroscopy was used to investigate the functional groups present in biodiesel. Thermal stability of biodiesel was evaluated using a thermogravimetric analyser. The optimal condition found was oil/methanol molar ratio (1:8), catalyst concentration (1 wt%) and reaction temperature \((45\,{^{\circ }}\hbox {C})\) while %FAME yield of about 94.1% at a residence time of 90 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdullah, A.Z.; Salamatinia, B.; Mootabadi, H.; Bhatia, S.: Current status and policies on biodiesel industry in Malaysia as the world’s leading producer of palm oil. Energy Policy 37(12), 5440–5448 (2009)

    Article  Google Scholar 

  2. Wang, R.; Zhou, W.W.; Hanna, M.A.; Zhang, Y.P.; Bhadury, P.S.; Wang, Y.; Song, B.A.; Yang, S.: Biodiesel preparation, optimization, and fuel properties from non-edible feedstock, Datura stramonium L. Fuel 91(1), 182–186 (2012)

    Article  Google Scholar 

  3. Yücel, Y.: Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology. Fuel Process. Technol. 99, 97–102 (2012)

    Article  Google Scholar 

  4. Fukuda, H.; Kond, A.; Noda, H.: Biodiesel fuel production by transesterification. J. Biosci. Bioeng. 92(5), 405–416 (2001)

    Article  Google Scholar 

  5. Leung, D.Y.C.; Wu, X.; Leung, M.K.H.: A review on biodiesel production using catalyzed transesterification. Appl. Energy 87(4), 1083–1095 (2010)

    Article  Google Scholar 

  6. Marchetti, J.M.; Miguel, V.U.; Errazu, A.F.: Techno-economic study of different alternatives for biodiesel production. Fuel Process. Technol. 89(8), 740–748 (2008)

    Article  Google Scholar 

  7. Sarin, R.; Sharma, M.; Sinharay, S.; Malhotra, R.K.: Jatropha–palm biodiesel blends: an optimum mix for Asia. Fuel 86(10–11), 1365–1371 (2007)

    Article  Google Scholar 

  8. Šalić, A.; Zelić, B.: Microreactors-portable factories for biodiesel fuel production. Goriva Maz. 50(2), 85–110 (2011)

    Google Scholar 

  9. Campanelli, P.; Banchero, M.; Manna, L.: Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel 89(12), 3675–3682 (2010)

    Article  Google Scholar 

  10. Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J.: Review of the applications of microreactors. Renew. Sustain. Energy Rev. 47, 519–539 (2015)

    Article  Google Scholar 

  11. Rashid, W.N.W.A.; Uemura, Y.; Kusakabe, K.; Osman, N.B.; Abdullah, B.: Synthesis of biodiesel from palm oil in capillary millichannel reactor: effect of temperature, methanol to oil molar ratio, and KOH concentration on FAME yield. Proc. Chem. 9, 165–171 (2014)

    Article  Google Scholar 

  12. Chang, C.H.; Paul, B.K.; Remcho, V.T.; Atre, S.; Hutchison, J.E.: Synthesis and post-processing of nanomaterials using microreaction technology. J. Nanopart. Res. 10(6), 965–980 (2008)

    Article  Google Scholar 

  13. Lin, L.; Ying, D.; Chaitep, S.; Vittayapadung, S.: Biodiesel production from crude rice bran oil and properties as fuel. Appl. Energy 86(5), 681–688 (2009)

    Article  Google Scholar 

  14. Patil, P.D.; Deng, S.: Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88(7), 1302–1306 (2009)

    Article  Google Scholar 

  15. Billo, R.E.; Oliver, C.R.; Charoenwat, R.; Dennis, B.H.; Wilson, P.A.; Priest, J.W.; Beardsley, H.: A cellular manufacturing process for a full-scale biodiesel microreactor. J. Manuf. Syst. 37, 409–416 (2015)

    Article  Google Scholar 

  16. Canter, N.: Making biodiesel in a microreactor. Tribol. Lubr. Technol. 68(8), 15–17 (2006)

    Google Scholar 

  17. Jovanovic, G.N.; Paul, B.K.; Parker, J.; Al-Dhubabian, A.: United States Patent Application, July 2, 2009. US 165,366, A1 (2009)

  18. Ariharan, V.N.; Devi, V.N.M.; Prasad, P.N.: Physico-chemical characterization of cotton seed oil for its potential use as biodiesel. Res. J. Pharm. Biol. Chem. Sci. 4(2), 1336–1345 (2013)

    Google Scholar 

  19. Knothe, G.; Van Gerpen, J.; Krahl, J.: The Biodiesel Handbook. AOCS Press, Champaign, IL (2005)

    Book  Google Scholar 

  20. Deshmukh, R.K.; Naik, J.B.: Optimization of sustained release aceclofenac microspheres using response surface methodology. Mater. Sci. Eng. C 48, 197–204 (2015)

    Article  Google Scholar 

  21. Khairnar, G.; Mokale, V.; Naik, J.: Formulation and development of nateglinide loaded sustained release ethyl cellulose microspheres by \(O/W\) solvent emulsification technique. J. Pharm. Investig. 44(6), 411–422 (2014)

    Article  Google Scholar 

  22. Yadava, S.K.; Naik, J.B.; Patil, J.S.; Mokale, V.J.; Singh, R.: Enhanced solubility and bioavailability of lovastatin using stabilized form of self-emulsifying drug delivery system. Colloids Surf. A Physicochem. Eng. Asp. 481, 63–71 (2015)

    Article  Google Scholar 

  23. Patil, P.; Khairnar, G.; Naik, J.: Preparation and statistical optimization of Losartan Potassium loaded nanoparticles using Box Behnken factorial design: microreactor precipitation. Chem. Eng. Res. Des. 104, 98–109 (2015)

    Article  Google Scholar 

  24. McCurry, J.D.: GC analysis of total fatty acid methyl esters (FAME) and methyl linolenate in biodiesel using the revised EN14103 : 2011 Method. Agilent Technologies, pp. 1–6 (2011)

  25. Wang, Y.; Ou, S.; Liu, P.; Xue, F.; Tang, S.: Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A: Chem. 252(1–2), 107–112 (2006)

    Article  Google Scholar 

  26. Patil, J.S.; Patil, P.B.; Sonawane, P.; Naik, J.B.: Design and development of sustained-release glyburide-loaded silica nanoparticles. Bull. Mater. Sci. 40(2), 263–270 (2017)

    Article  Google Scholar 

  27. Rahimi, M.; Aghel, B.; Alitabar, M.; Sepahvand, A.; Ghasempour, H.R.: Optimization of biodiesel production from soybean oil in a microreactor. Energy Convers. Manag. 79, 599–605 (2014)

    Article  Google Scholar 

  28. Sun, J.; Ju, J.; Ji, L.; Zhang, L.; Xu, N.: Synthesis of biodiesel in capillary microreactors. Ind. Eng. Chem. Res. 47(5), 1398–1403 (2008)

    Article  Google Scholar 

  29. Basiri, M.; Rahimi, M.; Mohammadi, H.B.: Ultrasound-assisted biodiesel production in microreactors. Iran. J. Chem. Eng. 13(2), 22–32 (2016)

    Google Scholar 

  30. American Society of Testing and Materials Standard Methods Annual Book of ASTM for Biodiesel Specification, Philadelphia (2002)

  31. Patil, P.; Gaikwad, G.; Patil, D.R.; Naik, J.: Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO nanocomposites for photocatalysis and gas sensor applications. Bull. Mater. Sci. 39(3), 655–665 (2016)

    Article  Google Scholar 

  32. Sood, S.; Jain, K.; Gowthamarajan, K.: Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf. B Biointerfaces 113, 330–337 (2014)

    Article  Google Scholar 

  33. Mustapha, M.; Haruna, M.K.; Awwal, S.; Ibrahim, A.: Optimization of biodiesel production from crude cotton seed oil using central composite design. Am. J. Chem. Biochem. Eng. 1(1), 8–14 (2016)

    Google Scholar 

  34. Hossain, A.B.M.S.; Mazen, M.A.: Effects of catalyst types and concentrations on biodiesel production from waste soybean oil biomass as renewable energy and environmental recycling process. Aust. J. Crop Sci. 4(7), 550–555 (2010)

    Google Scholar 

  35. Onukwuli, D.O.; Emembolu, L.N.; Ude, C.N.; Aliozo, S.O.; Menkiti, M.C.: Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt. J. Pet. 26(1), 103–110 (2017)

    Article  Google Scholar 

  36. Jain, S.; Sharma, M.P.: Application of thermogravimetric analysis for thermal stability of Jatropha curcas biodiesel. Fuel 93, 252–257 (2012)

    Article  Google Scholar 

  37. Freire, L.M.S.; Bicudo, T.C.; Rosenhaim, R.; Sinfrônio, F.S.M.; Botelho, J.R.; Carvalho Filho, J.R.; Santos, I.M.G.; Fernandes, V.J.; Antoniosi Filho, N.R.; Souza, A.G.: Thermal investigation of oil and biodiesel from Jatropha curcas L. J. Therm. Anal. Calorim. 96(3), 1029–1033 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Technical Education Quality Improvement Program (TEQIP-II), World Bank and MHRD, New Delhi, for providing financial assistance to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrimal, P., Sanklecha, H., Patil, P. et al. Biodiesel Production in Tubular Microreactor: Optimization by Response Surface Methodology. Arab J Sci Eng 43, 6133–6141 (2018). https://doi.org/10.1007/s13369-018-3245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3245-8

Keywords

Navigation