Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 10, pp 5551–5558 | Cite as

Reynolds stress modeling of flow characteristics in a vegetated rectangular open channel

  • Naveed Anjum
  • Usman Ghani
  • Ghufran Ahmed Pasha
  • Muhammad Usman Rashid
  • Abid Latif
  • M. Zubair Yousaf Rana
Research Article - Civil Engineering
  • 52 Downloads

Abstract

A computational technique to simulate turbulent and vegetated flow in a rectangular open channel was investigated. Reynolds stress model was implemented to the circular vegetation patch flow configuration for the investigation of flow properties and turbulence characteristics. A finite volume-based model was developed using a three-dimensional (3-D) numerical code FLUENT and the pre-processor Geometry and Mesh Building Intelligent Toolkit. The model was first validated and then used for simulation purpose. Vertical distribution of mean stream-wise velocities was computed at typical locations. A deceleration in the magnitude of stream-wise velocities was observed within the vegetation patch zone. Minimum values of velocity magnitude were observed directly behind the vegetation structures. Turbulence characteristics in the form of Reynolds stresses and turbulent kinetic energies investigated by this model showed that turbulence was greater in the regions of vegetation patch. This Reynolds stress modeling formulation has shown to be capable of capturing important mean flow and turbulence characteristics in the configuration considered.

Keywords

Turbulent flow Reynolds stress model Numerical simulation Open channel Vegetated domain 

List of symbols

\(u_{i}\)

Velocity component in i direction;

\(u_{j}\)

Velocity component in j direction;

\(\rho \)

Density of water;

P

Pressure;

\(\mu \)

Dynamic viscosity;

\({\rho u}_{i}u_{j}\)

Reynolds stresses

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are thankful to Higher Education Commission, Pakistan, for providing CFD facilities at University of Engineering & Technology, Taxila, Pakistan, which were utilized to conduct this research work.

References

  1. 1.
    Nepf, H.M.: Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35(2), 479–489 (1999)CrossRefGoogle Scholar
  2. 2.
    Neary, V.S.; Constantinescu, S.G.; Bennett, S.J.; Diplas, P.: Effects of vegetation on turbulence, sediment transport, and stream morphology. J. Hydraul. Eng. 138(9), 765–776 (2012)CrossRefGoogle Scholar
  3. 3.
    Lopez, F.; García, M.H.: Mean flow and turbulence structure of open channel flow through non-emergent vegetation. J. Hydralic. Eng. 127(5), 392–402 (2001)CrossRefGoogle Scholar
  4. 4.
    Choi, S.-U.; Kang, H.: Reynolds stress modelling of vegetated open channel flows. J. Hydraulic. Res. 42(1), 3–11 (2004)CrossRefGoogle Scholar
  5. 5.
    Jahra, F.; Kawahara, Y.; Hasegawa, F.; Yamamoto, H.: Flow-vegetation interaction in a compound open channel with emergent vegetation. Int. J. River Basin Manag. 9(3–4), 247–256 (2011)CrossRefGoogle Scholar
  6. 6.
    Hinze, J.O.: Turbulence, 2nd edn. McGraw Hill, New York (1975)Google Scholar
  7. 7.
    Zdravkovich, M.M.: Review of flow interference between two circular cylinders in various arrangements. ASME J. Fluids Eng. 99, 618–633 (1977)CrossRefGoogle Scholar
  8. 8.
    Poreh, M.: Turbulent energy dissipation model for fins with drag reduction. J. Fluids Eng. 100, 107 (1978)CrossRefGoogle Scholar
  9. 9.
    Malin, M.R.: Turbulent pipe flow of Herschel–Bulkley fluids. Int. Commun. Heat Mass Transf. 25(3), 321–330 (1998)CrossRefGoogle Scholar
  10. 10.
    Pinho, F.T.: A GNF framework for turbulent flow models of drag reducing fluids and proposal for a k-e type closure. J. Non Newton. Fluid Mech. 114(2), 149–184 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Leighton, R.; Walker, D.T.; Stephens, T.; Garwood, G.: Reynolds stress modeling for drag reducing viscoelastic flows. In: ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. American Society of Mechanical Engineers, pp. 735–744 (2003)Google Scholar
  12. 12.
    Pinho, F.T.; Li, C.F.; Younis, B.A.; Sureshkumar, R.: A low Reynolds number turbulence closure for viscoelastic fluids. J. Nonnewton. Fluid Mech. 154(2), 89–108 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Resende, P.R.; Kim, K.; Younis, B.A.; Sureshkumar, R.; Pinho, F.T.; Fene, P.: A k-e turbulence model for low and intermediate regimes of polymer-induced drag reduction. J. Nonnewton. Fluid Mech. 166(12), 639–660 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Resende, P.R.; Pinho, F.T.; Cruz, D.O.: A Reynolds stress model for turbulent flows of viscoelastic fluids. J. Turbul. 14(12), 1–36 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Iaccarino, G.; Shaqfeh, E.S.; Dubief, Y.: Reynolds-averaged modeling of polymer drag reduction in turbulent flows. J. Nonnewton. Fluid Mech. 165(7), 376–384 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Masoudian, M.; Kim, K.; Pinho, F.T.; Sureshkumar, R.: A viscoelastic turbulent flow model valid up to the maximum drag reduction limit. J. Non-newton. Fluid Mech. 202, 99–111 (2013)CrossRefGoogle Scholar
  17. 17.
    Tsukahara, T.; Kawaguchi, Y.: Proposal of damping function forlow-Reynolds number-model applicable in prediction of turbulentviscoelastic-fluid flow. J. Appl. Math. (2013)Google Scholar
  18. 18.
    Thais, L.; Tejada-Martinez, A.E.; Gatski, T.B.; Mompean, G.: Temporal large eddy simulations of turbulent viscoelastic drag reduction flows. Phys. Fluids. 22(1), 013103 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lockard, D.P.: Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I workshop. In 49th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 04–07 January Paper No. AIAA-2011-0353 (2011)Google Scholar
  20. 20.
    Schwamborn, D.; Strelets, M.: ATAAC—an EU-project dedicated to hybrid RANS/LES methods. In: Fu, S., Haase, W., Peng, S.-H., Schwamborn, D. (Eds.), Advances in Hybrid RANS-LES Modelling 4. In: Notes On Numerical Fluid Mechanics and Multidisciplinary Design, vol. 117. Springer, pp. 59–75. (ISBN 978-3-642-31817-4) (2012)Google Scholar
  21. 21.
    Garbaruk, A.; Shur, M.; Strelets, M.: Turbulent flow past two-body configurations, pp. 2–12 Knowledge Base wiki of ERCOFTAC. https://qnet-ercoftac.cfms.org.uk/w/index.php/UFR. (2012)
  22. 22.
    Garbaruk, A.V.; Spalart, P.R.; Strelets, MKh; Shur, M.L.: Flow and noise prediction for tandem cylinder. Matem. Mod. 26(6), 119–136 (2014)zbMATHGoogle Scholar
  23. 23.
    Weinmann, M.; Sandberg, R.D.; Doolan, C.: Tandem cylinder flow and noise predictions using a hybrid RANS/LES approach. Int. J. Heat Fluid Flow 50, 263–278 (2014)CrossRefGoogle Scholar
  24. 24.
    Wenxin, Huai; Weijie, Wang; Yang, Hu; Yuhong, Zeng; Zhonghua, Yang: Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation. Adv. Water Resour. 69, 106–113 (2014)CrossRefGoogle Scholar
  25. 25.
    Poggi, D.; Porporato, A.; Ridolfi, L.; Albertson, J.D.; Katul, G.G.: The effect of vegetation density on canopy sub-layer turbulence. Bound. Layer. Meteorol. 111, 565–587 (2004)CrossRefGoogle Scholar
  26. 26.
    Takemura, T.; Tanaka, N.: Flow structures and drag characteristics of a colony-type emergent roughness model mounted on a flat plate in uniform flow. Fluid Dyn. Res. 39, 694–710 (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Versteeg, H.K.; Malalasekera, W. An introduction to computational fluid dynamics. https://ekaoktariyantonugroho.files.wordpress.com/2008/04/an-introduction-to-computational-fluiddynamics-versteeg.pdf
  28. 28.
    Goharzadeh, A.; Molki, A.: Measurement of fluid velocity development behind a circular cylinder using particle image velocimetry (PIV). Eur. J. Phys. 36, 015001 (10pp) (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Naveed Anjum
    • 1
  • Usman Ghani
    • 1
  • Ghufran Ahmed Pasha
    • 1
  • Muhammad Usman Rashid
    • 2
  • Abid Latif
    • 3
  • M. Zubair Yousaf Rana
    • 1
  1. 1.Department of Civil EngineeringUniversity of Engineering and TechnologyTaxilaPakistan
  2. 2.Department of Civil EngineeringUniversity of Management and TechnologyLahorePakistan
  3. 3.Department of Civil EngineeringUniversity College of Engineering BZUMultanPakistan

Personalised recommendations