Advertisement

Wind Turbine Tower Modeling and Vibration Control Under Different Types of Loads Using Ant Colony Optimized PID Controller

  • Mahmudur Rahman
  • Zhi Chao Ong
  • Wen Tong Chong
  • Sabariah Julai
  • Xiong Wei Ng
Research Article - Mechanical Engineering
  • 27 Downloads

Abstract

Vibration in the wind turbine tower disturbs the reliability and increases the possibility of structural damage. Design and optimization of vibration controller are a key goal for wind turbine tower to achieve optimal performance. In this study, a proportional integral derivative (PID) is designed and optimized using nature technology to find optimal required force for actuators and therefore, reducing wind turbine tower vibration. PID controller parameters are optimized with ant colony optimization (ACO) and compared with traditional tuning methods such as Ziegler–Nichols and Tyreus–Luyben methods to ensure its effectiveness in minimizing wind turbine tower vibration. The optimized active vibration controller shows better performance than traditional method in terms of vibration reduction rate, ability to adapt when frequency varies and computational time. This paper also investigated finite difference method for wind turbine tower modeling, and its efficacy is compared with another well-known numerical finite element method based on mean squared error, fit to estimated data and cross signature assurance criterion. The performance of ACO optimized PID controller is investigated for wind turbine tower under four different types of disturbances and compared with uncontrolled and passive controlled system. Results show that 98, 84, 92 and 98% of displacement of the tower are reduced under simulated blade/rotor imbalance, impact, wind and turbulence disturbances, respectively, using ACO optimized PID controller.

Keywords

Active vibration control Ant colony optimization Finite difference method PID controller System identification Wind turbine tower 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Staino, A.; Basu, B.: Emerging trends in vibration control of wind turbines: a focus on a dual control strategy. Philos. Trans. R. Soc. A. 373(2035) (2015).  https://doi.org/10.1098/rsta.2014.0069
  2. 2.
    Rahman, M.; Ong, Z.C.; Chong, W.T.; Julai, S.; Khoo, S.Y.: Performance enhancement of wind turbine systems with vibration control: a review. Renew. Sust. Energy Rev. 51, 43–54 (2015).  https://doi.org/10.1016/j.rser.2015.05.078 CrossRefGoogle Scholar
  3. 3.
    Maldonado, V.; Boucher, M.; Ostman, R.; Amitay, M.: Active vibration control of a wind turbine blade using synthetic jets. Int. J. Flow Control 1, 227–238 (2009).  https://doi.org/10.1260/1756-8250.1.4.227 CrossRefGoogle Scholar
  4. 4.
    Staino, A.; Basu, B.: Dynamics and control of vibrations in wind turbines with variable rotor speed. Eng. Struct. 56, 58–67 (2013)CrossRefGoogle Scholar
  5. 5.
    Krenk, S.; Svendsen, M.N.; Høgsberg, J.: Resonant vibration control of three-bladed wind turbine rotors. AIAA J. 50, 148–161 (2012)CrossRefGoogle Scholar
  6. 6.
    Fitzgerald, B.; Basu, B.; Nielsen, S.R.K.: Active tuned mass dampers for control of in-plane vibrations of wind turbine blades. Struct. Control Health 20(12), 1377–1396 (2013).  https://doi.org/10.1002/stc.1524 CrossRefGoogle Scholar
  7. 7.
    Lackner, M.A.; Rotea, M.A.: Structural control of floating wind turbines. Mechatronics 21, 704–719 (2011).  https://doi.org/10.1016/j.mechatronics.2010.11.007 CrossRefGoogle Scholar
  8. 8.
    Zhang, Z.L.; Nielsen, S.R.K.; Blaabjerg, F.; Zhou, D.: Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque. Energies 7(11), 7746–7772 (2014).  https://doi.org/10.3390/en7117746 CrossRefGoogle Scholar
  9. 9.
    Zhu, J.; Cai, X.; Gu, R.R.: Multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine blades. Energies 10(1) (2017).  https://doi.org/10.3390/en10010101
  10. 10.
    Cai, X.; Zhu, J.; Pan, P.; Gu, R.R.: Structural optimization design of horizontal-axis wind turbine blades using a particle swarm optimization algorithm and finite element method. Energies 5(11), 4683–4696 (2012).  https://doi.org/10.3390/en5114683 CrossRefGoogle Scholar
  11. 11.
    Adhikari, S.; Bhattacharya, S.: Dynamic analysis of wind turbine towers on flexible foundations. Shock Vib. 19(1), 37–56 (2012).  https://doi.org/10.3233/Sav-2012-0615 CrossRefGoogle Scholar
  12. 12.
    Negm, H.M.; Maalawi, K.Y.: Structural design optimization of wind turbine towers. Comput. Struct. 74(6), 649–666 (2000).  https://doi.org/10.1016/S0045-7949(99)00079-6 CrossRefGoogle Scholar
  13. 13.
    Katsanis, G.R.: Transient small wind turbine tower structural analysis with coupled rotor dynamic interaction. California Polytechnic State University (2013)Google Scholar
  14. 14.
    Ros, N.F.M.; Saad, M.S.; Darus, I.Z.M.: Dynamic modeling and active vibration control of a flexible beam: a review. Int. J. Eng. Technol. 15(5), 12–17Google Scholar
  15. 15.
    Asareh, M.A.; Schonberg, W.; Volz, J.: Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method. Finite Elements Anal. Des. 120, 57–67 (2016).  https://doi.org/10.1016/j.finel.2016.06.006 CrossRefGoogle Scholar
  16. 16.
    Avila, S.M.; Shzu, M.A.M.; Morais, M.V.G.; del Prado, Z.J.G.: Numerical modeling of the dynamic behavior of a wind turbine tower. J. Vib. Eng. Technol. 4(3), 249–257 (2016)Google Scholar
  17. 17.
    Rajagopalan, R.G.; Fanucci, J.B.: Finite-difference model for vertical axis wind turbines. J. Propul. Power 1(6), 432–436 (1985).  https://doi.org/10.2514/3.22824 CrossRefGoogle Scholar
  18. 18.
    Jonkman, J.; Buhl, M.: FAST user’s guide. In: vol. NREL/EL-500-38230 (previously NREL/EL-500-29798). National Renewable Energy Laboratory (2005)Google Scholar
  19. 19.
    Prowell, I.; Elgamal, A.: FAST simulation of wind turbine seismic response. In: 2009 Asian-Pacific network of centers for earthquake engineering research (ANCER) workshop, Urbana-Champaign, Illinois (2009)Google Scholar
  20. 20.
    Housner, G.W.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T.P.: Structural control: past, present, and future. J. Eng. Mech. 123, 897971 (1997)CrossRefGoogle Scholar
  21. 21.
    Eide, R.; Karimi, H.: Control design methodologies for vibration mitigation on wind turbine systems. In: Beltran-Carbajal, F. (ed.) Vibration Analysis and Control-New Trends and Developments. InTech, Croatia (2009)Google Scholar
  22. 22.
    Karimi, H.; Zapateiro, M.; Luo, N.: Semiactive vibration control of offshore wind turbine towers with tuned liquid column dampers using H\(\infty \) output feedback control. In: IEEE International Conference on Control Applications, pp. 2245–2249. Yokohama (2010)Google Scholar
  23. 23.
    Staino, A.; Basu, B.: Robust Constrained Model Predictive Control for Flapwise Vibration Mitigation in Wind Turbines. Eurodyn. 1916–1923 (2011)Google Scholar
  24. 24.
    Wang, S.; Li, N.: Semi-active vibration control for offshore platforms based on LQG method. J. Mar. Sci. Technol. 21, 562–568 (2013).  https://doi.org/10.6119/JMST-012-0917-2 Google Scholar
  25. 25.
    Huang, W.; Xu, J.; Zhu, D.Y.; Wu, Y.L.; Lu, J.W.; Lu, K.L.: Semi-active vibration control using a magneto rheological (MR) damper with particle swarm optimization. Arab. J. Sci. Eng. 40(3), 747–762 (2015).  https://doi.org/10.1007/s13369-015-1574-4 CrossRefGoogle Scholar
  26. 26.
    Rahman, N.U.; Alam, M.N.: Active vibration control of a piezoelectric beam using PID controller: experimental study. Lat. Am. J. Solids Struct. 9(6), 657–673 (2012)CrossRefGoogle Scholar
  27. 27.
    Marinaki, M.; Marinakis, Y.; Stavroulakis, G.E.: Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization. Expert Syst. Appl. 38(6), 6872–6883 (2011).  https://doi.org/10.1016/j.eswa.2010.12.037 CrossRefGoogle Scholar
  28. 28.
    Mohamad, M.; Tokhi, M.; Omar, M.: Continuous ant colony optimisation for active vibration control of flexible beam structures. In: IEEE International Conference on Mechatronics (ICM), 2011, pp. 803-808. IEEE (2011)Google Scholar
  29. 29.
    Stavroulakis, G.E.; Foutsitzi, G.; Hadjigeorgiou, E.; Marinova, D.; Baniotopoulos, C.C.: Design and robust optimal control of smart beams with application on vibrations suppression. Adv. Eng. Softw. 36(11–12), 806–813 (2005).  https://doi.org/10.1016/j.advengsoft.2005.03.024 CrossRefGoogle Scholar
  30. 30.
    Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005).  https://doi.org/10.1016/j.plrev.2005.10.001 CrossRefGoogle Scholar
  31. 31.
    Genov, J.; Gilev, B.; Slavchev, Y.; Venkov, G.: Modeling and control of wind turbine tower vibrations. Appl. Math. Eng. Econ. 1293, 30–38 (2010).  https://doi.org/10.1063/1.3515600
  32. 32.
    Martynowicz, P.: Vibration control of wind turbine tower-nacelle model with magnetorheological tuned vibration absorber. J. Vib. Control, 1077546315591445 (2015).  https://doi.org/10.1177/1077546315591445
  33. 33.
    Hansen, M.O.L.; Sorensen, J.N.; Voutsinas, S.; Sorensen, N.; Madsen, H.A.: State of the art in wind turbine aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 42(4), 285–330 (2006).  https://doi.org/10.1016/j.paerosci.2006.10.002 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Mahmudur Rahman
    • 1
  • Zhi Chao Ong
    • 1
  • Wen Tong Chong
    • 1
  • Sabariah Julai
    • 1
  • Xiong Wei Ng
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations