Dynamic Characterization of a Bistable Energy Harvester Under Gaussian White Noise for Larger Time Constant

  • Sovan Sundar Dasgupta
  • Vasudevan Rajamohan
  • Abhishek Kumar Jha
Research Article - Mechanical Engineering
  • 24 Downloads

Abstract

In this paper, the system parameters of a nonlinear bistable energy harvester excited by Gaussian white noise was investigated. Using Fokker–Planck–Kolmogorov equation, the probability distribution functions of displacement and velocity of the oscillator are obtained. The effect of various system parameters on the probability distributions of displacement and velocity of the oscillator and the mean square of the output voltage are investigated when the time constant of the piezoelectric circuit takes a larger value to achieve maximum voltage gain. The maximum peak values of the joint probability distribution of displacement and velocity of the oscillator decrease with the larger values of noise strength. The effect of parameters of bistable potential function on mean square of output voltage was also investigated. The system equations are numerically solved and mean square value of output voltage is numerically estimated and is seen to be increased as noise intensity increases and decreased as viscous damping increases. The result also shows that better power output can be achieved when the time constant takes larger value.

Keywords

Energy harvester Bistable Gaussian white noise Time constant Probability distribution function Potential function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anton, S.R.; Sodano, H.A.: A review of power harvesting using piezoelectric materials. Smart Mater. Struct. 16, 1–229 (2007)CrossRefGoogle Scholar
  2. 2.
    Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 1, 165–167 (2007)Google Scholar
  3. 3.
    Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)CrossRefGoogle Scholar
  4. 4.
    Williams, C.B.; Yates, R.B.: Analysis of a micro-electric generator for micro-systems. Sens. Actuators Appl. Phys. 52, 8–11 (1996)CrossRefGoogle Scholar
  5. 5.
    Glynne-Jones, P.; Tudor, M.J.; Beeby, S.P.: White NM An electromagnetic vibration powered generator for intelligent sensor systems. Sens. Actuators A Phys. 110, 344–349 (2004)CrossRefGoogle Scholar
  6. 6.
    Tvedt, L.G.W.; Nguyen, D.S.; Halvorsen, E.: Nonlinear behavior of an electrostatic energy harvester under wide-and narrowband excitation. J. Microelectromech. Syst. 19, 305–316 (2010)CrossRefGoogle Scholar
  7. 7.
    Roundy, S.; Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2004)CrossRefGoogle Scholar
  8. 8.
    Shu, Y.; Lien, I.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499 (2006)CrossRefGoogle Scholar
  9. 9.
    Meninger, S.; Mur-Miranda, J.O.; Amirtharajah, R.; Chandrakasan, A.; Lang, J.: Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9, 64 (2001)CrossRefGoogle Scholar
  10. 10.
    Cottone, F.; Vocca, H.; Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)CrossRefGoogle Scholar
  11. 11.
    Gammaitoni, L.; Neri, I.; Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94, 164102 (2009)CrossRefGoogle Scholar
  12. 12.
    Ferrari, M.; Ferrari, V.; Guizzetti, M.; Ando, B.; Baglio, S.; Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator Phys. 162, 425–431 (2010)CrossRefGoogle Scholar
  13. 13.
    Erturk, A.; Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)CrossRefGoogle Scholar
  14. 14.
    Friswell, M.I.; Ali, S.F.; Bilgen, O.; Adhikari, S.; Lees, A.W.; Litak, G.: Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23, 1505 (2012)CrossRefGoogle Scholar
  15. 15.
    Litak, G.; Friswell, M.I.; Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)CrossRefGoogle Scholar
  16. 16.
    Daqaq, M.F.: Transduction of a bi-stable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2254–2264 (2011)CrossRefGoogle Scholar
  17. 17.
    Kumar, P.; Narayanan, S.; Adhikari, S.; Friswell, M.I.: Fokker-Planck equation analysis of randomly excited nonlinear energy harvester. J. Sound Vib. 333, 2000–2033 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhu, P.: Statistical stationary properties of nonlinear energy harvesting system under high-pass filter. Chin. J. Phys. 54, 545–554 (2016)CrossRefGoogle Scholar
  19. 19.
    McLachan, N.W.: Bessel Functions for Engineers. Clarendon Press, Oxford (1934)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Sovan Sundar Dasgupta
    • 1
  • Vasudevan Rajamohan
    • 2
  • Abhishek Kumar Jha
    • 1
  1. 1.School of Mechanical EngineeringVITVelloreIndia
  2. 2.Centre for Innovative Manufacturing Research (CIMR)VITVelloreIndia

Personalised recommendations