Skip to main content
Log in

Whole Process Inhibition of a Composite Superabsorbent Polymer-Based Antioxidant on Coal Spontaneous Combustion

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To achieve multiple and highly effective inhibition of coal spontaneous combustion, a novel composite inhibitor was developed by mixing a superabsorbent polymer (SAP) hydrogel with a synergistic antioxidant. Temperature-programmed oxidation, differential scanning calorimetry, and electron spin resonance were used to examine the inhibitor-treated coal samples to investigate the slowing effect of the composite inhibitor by comparing the inhibitions of the SAP hydrogel, synergistic antioxidant, and composite inhibitor on coal oxidation. The SAP hydrogel physically suppresses coal oxidation during the low-temperature phase, while the synergistic antioxidant chemically inhibits the oxidation during the high-temperature stage. Nevertheless, the composite inhibitor provides stable physicochemical inhibition for coal oxidation throughout the oxidation process by the synergistic effect of physical and chemical inhibition; the composite inhibitor provides a better overall effect for suppressing coal spontaneous combustion by combining the inhibiting characteristics of the SAP hydrogel and synergistic antioxidant. This study combines physical and chemical inhibitions of coal oxidation and provides a new method to efficiently prevent coal spontaneous combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Stracher, G.B.; Taylor, T.P.: Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 59, 7–17 (2004)

    Article  Google Scholar 

  2. Tang, Z.; Yang, S.; Zhai, C.; et al.: Coal pores and fracture development during CBM drainage: their promoting effects on the propensity for coal and gas outbursts. J. Nat. Gas Sci. Eng. 51, 9–17 (2018)

    Article  Google Scholar 

  3. Colaizzi, G.J.: Prevention, control and/or extinguishment of coal seam fires using cellular grout. Int. J. Coal Geol. 59, 75–81 (2004)

    Article  Google Scholar 

  4. Voigt, S.; Tetzlaff, A.; Zhang, J.; Künzer, C.; Zhukov, B.; Strunz, G.; et al.: Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in north china. Int. J. Coal Geol. 59, 121–136 (2004)

    Article  Google Scholar 

  5. Kuenzer, C.; Zhang, J.; Tetzlaff, A.; Dijk, P.V.; Voigt, S.; Mehl, H.; et al.: Uncontrolled coal fires and their environmental impacts: investigating two arid mining regions in North-Central China. Appl. Geogr. 27, 42–62 (2007)

    Article  Google Scholar 

  6. Finkelman, R.B.: Potential health impacts of burning coal beds and waste banks. Int. J. Coal Geol. 59, 19–24 (2004)

    Article  Google Scholar 

  7. Nolter, M.A.; Vice, D.H.: Looking back at the centralia coal fire: a synopsis of its present status. Int. J. Coal Geol. 59, 99–106 (2004)

    Article  Google Scholar 

  8. Sujant, W.; Zhang, D.K.: Investigation into the role of inherent inorganic matter and additives in low-temperature oxidation of a victorian brown coal. Combust. Sci. Technol. 152, 99–114 (2000)

    Article  Google Scholar 

  9. Slovák, V.; Taraba, B.: Urea and cacl 2, as inhibitors of coal low-temperature oxidation. J. Therm. Anal. Calorim. 110, 363–367 (2012)

    Article  Google Scholar 

  10. Zhou, F.B.; Ren, W.X.; Wang, D.M.; Song, T.L.; Li, X.; Zhang, Y.L.: Application of three-phase foam to fight an extraordinarily serious coal mine fire. Int. J. Coal Geol. 67, 95–100 (2006)

    Article  Google Scholar 

  11. Watanabe, W.S.; Zhang, D.K.: The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal. Fuel Process. Technol. 74, 145–160 (2001)

    Article  Google Scholar 

  12. Qi, X.Y.; Wei, C.X.; Li, Q.Z.; Zhang, L.B.: Controlled-release inhibitor for preventing the spontaneous combustion of coal. Nat. Hazards 82, 1–11 (2016)

    Google Scholar 

  13. Wang, D.M.; Dou, G.L.; Zhong, X.X.; Xin, H.H.; Qin, B.T.: An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 117, 218–223 (2014)

    Article  Google Scholar 

  14. Li, J.L.; Lu, W.; Xu, J.: Coal spontaneous combustion prevention and cure with chemical retarder as well as analysis on retarding mechanism. Coal Sci. Technol. 40, 50–53 (2012)

    Google Scholar 

  15. Wei, L.: A new theory of chemical method to prevent spontaneous combustion of coal. J. Coal Sci. Eng. 15, 220–224 (2009). (in Chinese)

    Article  Google Scholar 

  16. Buchholz, F.L.; Peppas, N.A.: Superabsorbent polymers: science and technology. ACS Symposium Series, p. 573 (1994)

  17. Zohuriaan-Mehr, M.J.; Omidian, H.; Doroudiani, S.; Kabiri, K.: Advances in non-hygienic applications of superabsorbent hydrogel materials. J. Mater. Sci. 45, 5711–5735 (2010)

    Article  Google Scholar 

  18. Karadağ, E.; Saraydin, D.; Çaldiran, Y.; Güven, O.: Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polym. Adv. Technol. 11, 59–68 (2000)

    Article  Google Scholar 

  19. Asako, Y.; Otaka, T.; Yamaguchi, Y.: Fire resistance characteristics of materials with polymer gels which absorb aqueous solution of calcium chloride. Numer. Heat Transf. A Appl. 45, 49–66 (2010)

    Article  Google Scholar 

  20. Limparyoon, N.; Seetapan, N.; Kiatkamjornwong, S.: Acrylamide/2-acrylamido-2-methylpropane sulfonic acid and associated sodium salt superabsorbent copolymer nanocomposites with mica as fire retardants. Polym. Degrad. Stab. 96, 1054–1063 (2011)

    Article  Google Scholar 

  21. Pipiraite, P.P.; Bolotin, A.B.; Gorbunov, B.N.: Theoretical investigation of mechanism of antioxidant action of sterically hindered phenols. Theor. Exp. Chem. 27, 152–156 (1991)

    Article  Google Scholar 

  22. Beamish, B.; Mclellan, P.; Endara, H.; Turunc, U.; Raab, M.; Beamish, R.: Delaying spontaneous combustion of reactive coals through inhibition. Coal Oper. Conf. 39, 157–162 (2013)

  23. Beamish, B.B.; Mclellan, P.; Turunc, U.; Raab, M.; Beamish, R.T.: Quantifying spontaneous combustion inhibition of reactive coals. 14th US/North American Mine Ventilation Symposium (2012)

  24. Qin, B.T.; Dou, G.L.; Wang, Y.; Xin, H.H.; Ma, L.Y.; Wang, D.M.: A superabsorbent hydrogel-ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190, 129–135 (2017)

    Article  Google Scholar 

  25. Li, Z.H.; Kong, B.; Wei, A.Z.; Yang, Y.L.; Zhou, Y.B.; Zhang, L.Z.: Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res. Int. 23, 1–13 (2016)

    Article  Google Scholar 

  26. Uchida, S.; Murakami, T.; Iwamura, T.; et al.: Enhanced thermal conductivity in immiscible polyimide blend composites with needle-shaped ZnO particles. RSC Adv. 7, 15492–15499 (2017)

    Article  Google Scholar 

  27. Choi, S.H.; Kim, D.H.; Raghu, A.; et al.: Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J. Macromol. Sci. B 51, 197–207 (2012)

    Article  Google Scholar 

  28. Reddy, K.R.; Lee, K.P.; Gopalan, A.I.: Self-assembly approach for the synthesis of electro-magnetic functionalized Fe\(_{3}\)O\(_{4}\) /polyaniline nanocomposites: Effect of dopant on the properties. Colloids Surf. Physicochem. Eng. Asp. 320, 49–56 (2008)

    Article  Google Scholar 

  29. Reddy, K.R.; Sin, B.C.; Ryu, K.S.; et al.: Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth. Met. 159, 595–603 (2009)

    Article  Google Scholar 

  30. Hassan, M.; Reddy, K.R.; Haque, E.; et al.: High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J. Colloid Interface Sci. 410, 43–51 (2013)

    Article  Google Scholar 

  31. Reddy, K.R.; Lee, K.P.; Gopalan, A.I.: Self-assembly directed synthesis of poly(ortho-toluidine)-metal(gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)

    Article  Google Scholar 

  32. Yu, R.L.; Kim, S.C.; Lee, H.I.; et al.: Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19, 66–71 (2011)

    Article  Google Scholar 

  33. Reddy, K.R.; Lee, K.P.; Gopalan, A.I.; et al.: Organosilane modified magnetite nanoparticles/poly(aniline-co-o /m -aminobenzenesulfonic acid) composites: synthesis and characterization. React. Funct. Polym. 67, 943–954 (2007)

    Article  Google Scholar 

  34. Zhang, Y.P.; Lee, S.H.; Reddy, K.R.; et al.: Synthesis and characterization of core-shell SiO\(_{2 }\)nanoparticles/poly (3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)

    Article  Google Scholar 

  35. Reddy, K.R.; Nakata, K.; Ochiai, T.; et al.: Nanofibrous TiO\(_{2}\)-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. J. Nanosci. Nanotechnol. 10, 7951–7957 (2010)

    Article  Google Scholar 

  36. Han, S.J.; Lee, H.I.; Han, M.J.; et al.: Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. B 53, 1193–1204 (2014)

    Article  Google Scholar 

  37. Lu, P.; Liao, G.; Sun, J.H.; Li, P.D.: Experimental research on index gas of the coal spontaneous at low-temperature stage. J. Loss Prev. Process Ind. 17, 243–247 (2004)

    Article  Google Scholar 

  38. Yuan, L.; Smith, A.C.: Experimental study on CO and CO\(_{2}\), emissions from spontaneous heating of coals at varying temperatures and O\(_{2}\), concentrations. J. Loss Prev. Process Ind. 26, 1321–1327 (2013)

    Article  Google Scholar 

  39. Ma, L.Y.; Wang, D.M.; Wang, Y.; Dou, G.L.; Xin, H.H.: Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal. Fuel Process. Technol. 157, 65–75 (2017)

    Article  Google Scholar 

  40. Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N.: Ictac kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)

    Article  Google Scholar 

  41. Segal, E.; Fatu, D.: Some variants of the freeman-carroll method. J. Therm. Anal. Calorim. 9, 65–69 (1976)

    Article  Google Scholar 

  42. Browna, M.E.; Maciejewskib, M.; Vyazovkinc, S.: Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim. Acta 355, 125–143 (2000)

    Article  Google Scholar 

  43. Rudnick, L.R.; Tueting, D.: Investigation of free radicals produced during coal liquefaction using ESR. Fuel 63, 153–157 (1984)

    Article  Google Scholar 

  44. Davies, M.J.: Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods 109, 21 (2016)

    Article  Google Scholar 

  45. Kościelniak-Ziemniak, M.; Pilawa, B.: Application of EPR spectroscopy for examination of free radical formation in thermally sterilized betamethasone, clobetasol, and dexamethasone. Appl. Magn. Reson. 42, 519–530 (2012)

    Article  Google Scholar 

  46. Li, Z.F.; Zhang, Y.L.; Jing, X.X.; Zhang, Y.L.; Chang, L.P.: Insight into the intrinsic reaction of brown coal oxidation at low temperature: differential scanning calorimetry study. Fuel Process. Technol. 147, 64–70 (2016)

    Article  Google Scholar 

  47. Ozbas, K.E.; Kök, M.V.; Hicyilmaz, C.: DSC study of the combustion properties of Turkish coals. J. Therm. Anal. Calorim. 71, 849–856 (2003)

    Article  Google Scholar 

  48. Pilawa, B.; Więckowski, A.B.; Trzebicka, B.: Numerical analysis of EPR spectra of coal, macerals and extraction products. Radiat. Phys. Chem. 45, 899–908 (1995)

    Article  Google Scholar 

  49. Zohuriaan-Mehr, M.J.; Kabiri, K.: Superabsorbent polymer materials: a review. Iran. Polym. J. 17, 451–477 (2008)

    Google Scholar 

  50. Schwetlick, K.; König, T.; Rüger, C.; Pionteck, J.; Habicher, W.D.: Chain-breaking antioxidant activity of phosphite esters. Polym. Degrad. Stab. 15, 97–108 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengqiang Yang or Xincheng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Yang, S., Hu, X. et al. Whole Process Inhibition of a Composite Superabsorbent Polymer-Based Antioxidant on Coal Spontaneous Combustion. Arab J Sci Eng 43, 5999–6009 (2018). https://doi.org/10.1007/s13369-018-3167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3167-5

Keywords

Navigation