Skip to main content

Advertisement

Log in

Anticorrosive Performance of New Epoxy-Amine Coatings Based on Zinc Phosphate Tetrahydrate as a Nontoxic Pigment for Carbon Steel in NaCl Medium

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Epoxy resin is known to react with a hardener such as polyamine to form a thermoset 3D polymer net with an outstanding physical and mechanical properties. They are widely used in coating and adhesives. In this study, we present a new epoxy resin material useful for making an anticorrosive formulation for carbon steel. The epoxy resin presented in this study is diglycidyl ether 4,\(4^{\prime }\)-dihydroxy diphenyl sulfone (DGEDDS). It was prepared in a two-step process that involves reacting epichlorohydrin with 4, \(4^{\prime }\) dihydroxy diphenyl sulfone then with sodium hydroxide. The structural elucidation of DGEDDS was carried out with Fourier transform infrared. The anticorrosive formulation DGEDDS–MDA–ZPH was prepared from DGEDDS and the hardener 4,\(4^{\prime }\)-methylene dianiline (MDA) in the presence of the anticorrosion pigment zinc phosphate tetrahydrate (ZPH). Another standard formulation (DGEDDS–MDA) was prepared without ZPH. The physicochemical and anticorrosive performance of the coated carbon steel was evaluated using electrochemical impedance spectroscopy (EIS). The coated surface was subjected to morphological characterization by SEM before and after immersion in the corrosive medium and exposing it to the UV radiation. The value of the polarization resistance (\(R_{\mathrm{p}}\)) obtained by the EIS method for the standard coating DGEDDS–MDA and epoxy composite coating DGEDDS–MDA–ZPH was 31898 and 72611 \(\Omega \,\hbox {cm}^{2}\) during the 1 h of immersion in 3 wt% NaCl, respectively. After aging by exposing the coatings for a 2000 h to UV radiation the values were dropped to 2596 and 5189 \(\Omega \,\hbox {cm}^{2}\), respectively. The values show the high stability and resistance of the epoxy resin coating to electrolytes and UV radiation. The coating even showed higher stability in the presence of ZPH pigment. As shown in the results, the tricomponent composite showed an outstanding stability in protecting carbon steel form corrosion in an aggressive marine environment where UV is very intense and the humidity and salts are very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, C.-H.; Huang, T.-C.; Peng, C.-W.; Yeh, T.-C.; Lu, H.-I.; Hung, W.-I.; Weng, C.-J.; Yang, T.-I.; Yeh, J.-M.; Chang, C.H.; Huang, T.C.; Peng, C.W.; Yeh, T.C.; Lu, H.I.; Hung, W.I.; Yeh, J.M.: Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50(14), 5044–5051 (2012)

    Article  Google Scholar 

  2. Chang, K.-C.; Ji, W.-F.; Lai, M.-C.; Hsiao, Y.-R.; Hsu, C.-H.; Chuang, T.-L.; Wei, Y.; Yeh, J.-M.; Liu, W.-R.; Chang, K.C.; Ji, W.F.; Lai, M.C.; Hsiao, Y.R.; Hsu, C.H.; Chuang, T.L.; Liu, W.R.: Synergistic effects of hydrophobicity and gas barrier properties on the anticorrosion property of PMMA nanocomposite coatings embedded with graphene nanosheets. Polym. Chem. 5(3), 1049–1056 (2013)

    Article  Google Scholar 

  3. Ding, J.; ur Rahman, O.; Peng, W.; Dou, H.; Yu, H.: A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterbone graphene/epoxy coatings. Appl. Surf. Sci. 427, 981–991 (2018)

    Article  Google Scholar 

  4. Liu, S.; Yan, H.; Fang, Z.; Wang, H.: Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos. Sci. Technol. 90, 40–47 (2014)

    Article  Google Scholar 

  5. Zhang, Z.; Zhang, W.; Li, D.; Sun, Y.; Wang, Z.; Hou, C.; Chen, L.; Cao, Y.; Liu, Y.: Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method. Int. J. Mol. Sci. 16(1), 2239–2251 (2015)

    Article  Google Scholar 

  6. Behzadnasab, M.; Mirabedini, S.M.; Esfandeh, M.; Farnood, R.R.: Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy. Prog. Org. Coat. 105, 212–224 (2017)

    Article  Google Scholar 

  7. Mahmoodi, A.; Ebrahimi, M.: Role of a hybrid dye–clay nano-pigment (DCNP) on corrosion resistance of epoxy coatings. Prog. Org. Coat. 114, 223–232 (2018)

    Article  Google Scholar 

  8. Jadhav, A.J.; Holkar, C.R.; Pinjari, D.V.: Anticorrosive performance of super-hydrophobic imidazole encapsulated hollow zinc phosphate nanoparticles on mild steel. Prog. Org. Coat. 114, 33–39 (2018)

    Article  Google Scholar 

  9. Ghaffari, M.S.; Naderi, R.; Sayehbani, M.: The effect of mixture of mercaptobenzimidazole and zinc phosphate on the corrosion protection of epoxy/polyamide coating. Prog. Org. Coat. 86, 117–124 (2015)

    Article  Google Scholar 

  10. Gimeno, M.J.; Puig, M.; Chamorro, S.; Molina, J.; March, R.; Oró, E.; Suay, J.J.: Improvement of the anticorrosive properties of an alkyd coating with zinc phosphate pigments assessed by nss and acet. Prog. Org. Coat. 95, 46–53 (2016)

    Article  Google Scholar 

  11. Rangari, V.K.; Bhuyan, M.S.; Jeelani, S.: Microwave curing of CNFs/EPON-862 nanocomposites and their thermal and mechanical properties. Compos. A Appl. Sci. Manuf. 42(7), 849–858 (2011)

    Article  Google Scholar 

  12. Okabe, T.; Oya, Y.; Tanabe, K.; Kikugawa, G.; Yoshioka, K.: Molecular dynamics simulation of crosslinked epoxy resins: curing and mechanical properties. Eur. Polym. J. 80, 78–88 (2016)

    Article  Google Scholar 

  13. Ferdosian, F.; Zhang, Y.; Yuan, Z.; Anderson, M.; Xu, C.C.: Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins. Eur. Polym. J. 82, 153–165 (2016)

    Article  Google Scholar 

  14. Jin, F.L.; Li, X.; Park, S.J.: Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 29, 1–11 (2015)

    Article  Google Scholar 

  15. Ferdosian, F.; Yuan, Z.; Anderson, M.; Xu, C.C.: Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: curing kinetics and thermal properties. Thermochim. Acta 618, 48–55 (2015)

    Article  Google Scholar 

  16. Yu, Z.; Di, H.; Ma, Y.; Lv, L.; Pan, Y.; Zhang, C.; He, Y.: Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl. Surf. Sci. 351, 986–996 (2015)

    Article  Google Scholar 

  17. Kocaman, S.; Ahmetli, G.: A study of coating properties of biobased modified epoxy resin with different hardeners. Prog. Org. Coat. 97, 53–64 (2016)

    Article  Google Scholar 

  18. Jin, F.L.; Liu, H.C.; Yang, B.; Park, S.J.: Synthesis and thermal properties of urethane-containing epoxy resin. J. Ind. Eng. Chem. 24, 20–23 (2015)

    Article  Google Scholar 

  19. Meghraoui, H.; Rami, N.; Echchelh, A.; Elharfi, A.: Etude comparative des propriétés dielectriques des systèmes epoxy-amine dans un champ electrique à basse fréquence. Annales de chimie Lavoisier. 34(3), 141–153 (2009)

    Article  Google Scholar 

  20. Wang, H.; Liu, Z.; Wang, E.; Zhang, X.; Yuan, R.; Wu, S.; Zhu, Y.: Facile preparation of superamphiphobic epoxy resin/modified poly (vinylidene fluoride)/fluorinated ethylene propylene composite coating with corrosion/wear-resistance. Appl. Surf. Sci. 357, 229–235 (2015)

    Article  Google Scholar 

  21. El Gouri, M.; El Bachiri, A.; Hegazi, S.E.; Rafik, M.; El Harfi, A.: Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym. Degrad. Stab. 94(11), 2101–2106 (2009)

    Article  Google Scholar 

  22. Pascuta, P.; Borodi, G.; Popa, A.; Dan, V.; Culea, E.: Influence of iron ions on the structural and magnetic properties of some zinc-phosphate glasses. Mater. Chem. Phys. 123(2), 767–771 (2010)

    Article  Google Scholar 

  23. Palimi, M.J.; Alibakhshi, E.; Ramezanzadeh, B.; Bahlakeh, G.; Mahdavian, M.: Screening the anti-corrosion effect of a hybrid pigment based on zinc acetyl acetonate on the corrosion protection performance of an epoxy-ester polymeric coating. J. Taiwan Inst. Chem. Eng. 82, 261–272 (2018)

    Article  Google Scholar 

  24. Guo, B.; Finne-Wistrand, A.; Albertsson, A.C.: Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer. Biomacromolecules 11(4), 855–863 (2010)

    Article  Google Scholar 

  25. Haddadi, S.A.; Mahdavian, M.; Karimi, E.: Evaluation of the corrosion protection properties of an epoxy coating containing sol-gel surface modified nano-zirconia on mild steel. RSC Adv. 5(36), 28769–28777 (2015)

    Article  Google Scholar 

  26. Motamedi, M.; Attar, M.M.: anostructured vanadium-based conversion treatment of mild steel substrate: formation process via noise measurement, surface analysis and anti-corrosion behavior. RSC Adv. 6(50), 44732–44741 (2016)

    Article  Google Scholar 

  27. Avci, G.: Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5 M HCl. Colloids Surf., A 317(1), 730–736 (2008)

    Article  Google Scholar 

  28. Liu, X.; Xiong, J.; Lv, Y.; Zuo, Y.: Study on corrosion electrochemical behavior of several different coating systems by EIS. Prog. Org. Coat. 64(4), 497–503 (2009)

    Article  Google Scholar 

  29. Montemor, M.F.; Snihirova, D.V.; Taryba, M.G.; Lamaka, S.V.; Kartsonakis, I.A.; Balaskas, A.C.; Ferreira, M.G.S.: Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim. Acta 60, 31–40 (2012)

    Article  Google Scholar 

  30. Ramezanzadeh, B.; Attar, M.M.: Studying the corrosion resistance and hydrolytic degradation of an epoxy coating containing ZnO nanoparticles. Mater. Chem. Phys. 130(3), 1208–1219 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Dagdag or O. Hamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdag, O., Harfi, A.E., Essamri, A. et al. Anticorrosive Performance of New Epoxy-Amine Coatings Based on Zinc Phosphate Tetrahydrate as a Nontoxic Pigment for Carbon Steel in NaCl Medium. Arab J Sci Eng 43, 5977–5987 (2018). https://doi.org/10.1007/s13369-018-3160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3160-z

Keywords

Navigation