Skip to main content
Log in

Effective Removal of Phosphate from Aqueous by Graphene Oxide Decorated with \(\varvec{\upalpha }\text {-}\hbox {Fe}_{2}\hbox {O}_{3}\): Kinetic, Isotherm, Thermodynamic and Mechanism Study

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The excessive phosphate discharged into the environment has damaged the ecosystem seriously. In this work, a kind of 3D adsorbents, \(\upalpha \hbox {-Fe}_{2}\hbox {O}_{3}\) decorated graphene oxide \((\hbox {GO--Fe}_{2}\hbox {O}_{3})\), was synthesized to deal with phosphate-polluted water. The phosphate adsorption capacity of \(\hbox {GO--Fe}_{2}\hbox {O}_{3}\) reached to \(93.28\,\hbox { mg\,g}^{-1}\), in \(50\,\hbox { mg\, L}^{-1}\) phosphate solution at pH 6.0 and temperature 298 K, and the phosphate adsorption efficiency is very stable between the pH range of 2.0–10.5 and temperature range of 293–333 K. The adsorption progress is rapid, and adsorption equilibrium was reached within 5 min. The phosphate adsorption behavior of \(\hbox {GO--Fe}_{2}\hbox {O}_{3}\) fitted the Langmuir model, and the adsorption kinetic fitted the pseudo-second-order model. Ion exchange and electrostatic attraction are the main reactions in the adsorption process. Physical adsorption and chemical adsorption both are in the adsorption process. The phosphate adsorption progress is stable and rapid; thus, it is a good choice to deal with phosphate-polluted water by \(\hbox {GO--Fe}_{2}\hbox {O}_{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schröder, J.J.; Smit, A.L.; Cordell, D.; Rosemarin, A.: Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84(6), 822–831 (2011)

    Article  Google Scholar 

  2. Pieterse, N.; Bleuten, W.; Jørgensen, S.: Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries. J. Hydrol. 271(1), 213–225 (2003)

    Article  Google Scholar 

  3. Arvin, E.: Observations supporting phosphate removal by biologically mediated chemical precipitation. Rev. Water Sci. Technol. 15(3/4), 43–63 (2011)

    Google Scholar 

  4. Paul, D.; Sinha, S.N.: Biological removal of phosphate using phosphate solubilizing bacterial consortium from synthetic wastewater: a laboratory scale. Environmentasia 8(1), 1–8 (2015)

    Google Scholar 

  5. Xu, P.; Capito, M.; Cath, T.Y.: Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate. J. Hazard. Mater. 260(18), 885–891 (2013)

    Article  Google Scholar 

  6. Yang, Y.; Lohwacharin, J.; Takizawa, S.: Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate. Water Res. 65, 177–185 (2014)

    Article  Google Scholar 

  7. Wu, S.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R.: Development of constructed wetlands inperformance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res. 57C(5), 40–55 (2014)

    Article  Google Scholar 

  8. Kulkarni, S.J.: Advancements, research and challenges in reactive adsorption: a review. Int. J. Res. 2(1), 477–480 (2015)

    Google Scholar 

  9. Ye, J.; Cong, X.; Zhang, P.; Hoffmann, E.; Zeng, G.; Liu, Y.; Fang, W.; Wu, Y.; Zhang, H.: Interaction between phosphate and acid-activated neutralized red mud during adsorption process. Appl. Surf. Sci. 356, 128–134 (2015)

    Article  Google Scholar 

  10. Rui, M.N.; Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A.: Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. J. Hazard. Mater. 318, 631 (2016)

    Article  Google Scholar 

  11. Apul, O.G.; Wang, Q.; Zhou, Y.; Karanfil, T.: Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon. Water Res. 47(4), 1648–1654 (2013)

    Article  Google Scholar 

  12. And, C.C.; Wang, X.: Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45(26), 9144–9149 (2015)

    Google Scholar 

  13. Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.-F.; Ugliengo, P.: Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem. Rev. 113(6), 4216–4313 (2013)

    Article  Google Scholar 

  14. Panic, V.V.; Velickovic, S.J.: Removal of model cationic dye by adsorption onto poly (methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis. Sep. Purif. Technol. 122, 384–394 (2014)

    Article  Google Scholar 

  15. Xie, J.; Wang, Z.; Fang, D.; Li, C.; Wu, D.: Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water. J. Colloid Interf. Sci. 423, 13–19 (2014)

    Article  Google Scholar 

  16. Cao, C.Y.; Qu, J.; Yan, W.S.; Zhu, J.F.; Wu, Z.Y.; Song, W.G.: Low-cost synthesis of flowerlike \(\alpha \text{-Fe }_{2}\text{ O }_{3}\) nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir 28(9), 4573–4579 (2012)

    Article  Google Scholar 

  17. Kakavandi, B.; Kalantary, R.R.; Jafari, A.J.; Nasseri, S.; Ameri, A.; Esrafili, A.; Azari, A.: Pb(II) adsorption onto a magnetic composite of activated carbon and superparamagnetic \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles: experimental and modeling study. CLEAN Soil Air Water 43(8), 1157–1166 (2015)

    Article  Google Scholar 

  18. Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S.: Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interf. 4(3), 1186–1193 (2012)

    Article  Google Scholar 

  19. Najafi, F.; Moradi, O.; Rajabi, M.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K.: Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide. J. Mol. Liq. 208, 106–113 (2015)

    Article  Google Scholar 

  20. Mohan, S.; Kumar, V.; Singh, D.K.; Hasan, S.H.: Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: isotherm, kinetic and thermodynamic modeling of adsorption. J. Environ. Chem. Eng. 5(3), 2259–2273 (2017)

    Article  Google Scholar 

  21. Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X.: Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368(368), 540–546 (2012)

    Article  Google Scholar 

  22. Ghadim, E.E.; Manouchehri, F.; Soleimani, G.; Hosseini, H.; Kimiagar, S.; Nafisi, S.: Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies. PLoS ONE 8(11), e79254–e79254 (2013)

    Article  Google Scholar 

  23. Pavagadhi, S.; Ai, L.L.T.; Sathishkumar, M.; Loh, K.P.; Balasubramanian, R.: Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments. Water Res 47(13), 4621–4629 (2013)

    Article  Google Scholar 

  24. Li, Y.; Du, Q.; Liu, T.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L.: Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohyd. Polym. 95(1), 501–507 (2013)

    Article  Google Scholar 

  25. Yan, H.; Tao, X.; Yang, Z.; Li, K.; Yang, H.; Li, A.; Cheng, R.: Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J. Hazard. Mater. 268, 191–198 (2014)

    Article  Google Scholar 

  26. Mohan, S.; Kumar, V.; Singh, D.K.; Hasan, S.H.: Synthesis and characterization of \(\text{ rGO/ZrO }_{2}\) nanocomposite for enhanced removal of fluoride from water: kinetics, isotherm, and thermodynamic modeling and its adsorption mechanism. RSC Adv. 6(90), 87523–87538 (2016)

    Article  Google Scholar 

  27. Gong, Z.; Li, S.; Han, W.; Wang, J.; Ma, J.; Zhang, X.: Recyclable graphene oxide grafted with poly(N-isopropylacrylamide) and its enhanced selective adsorption for phenols. Appl. Surf. Sci. 362, 459–468 (2015)

    Article  Google Scholar 

  28. Wang, X.; Huang, S.; Zhu, L.; Tian, X.; Li, S.; Tang, H.: Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon 69(69), 101–112 (2014)

    Article  Google Scholar 

  29. Sakulpaisan, S.; Vongsetskul, T.; Reamouppaturm, S.; Luangkachao, J.; Tantirungrotechai, J.; Tangboriboonrat, P.: Titania-functionalized graphene oxide for an efficient adsorptive removal of phosphate ions. J. Environ. Manag. 167, 99–104 (2016)

    Article  Google Scholar 

  30. Zong, E.; Wei, D.; Wan, H.; Zheng, S.; Xu, Z.; Zhu, D.: Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide. Chem. Eng. J. 221(221), 193–203 (2013)

    Article  Google Scholar 

  31. Kovtyukhova, I.K.; Ollivier, J.O.; Martin, B.R.; Mallouk, T.E.; Chizhik, S.A.; Buzaneva, E.V.; Gorchinskiy, A.D.: Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11(3), 771–778 (1999)

    Article  Google Scholar 

  32. Kahani, S.A.; Jafari, M.: A new method for preparation of magnetite from iron oxyhydroxide or iron oxide and ferrous salt in aqueous solution. J. Magn. Magn. Mater. 321(321), 1951–1954 (2009)

    Article  Google Scholar 

  33. Hu, X.; Yu, J.C.; Gong, J.; Li, Q.; Li, G.: \(\alpha \text{-Fe }_{2}\text{ O }_{3}\) nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19(17), 2324–2329 (2007)

    Article  Google Scholar 

  34. Benjamin, M.M.; Leckie, J.O.: Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 79(1), 209–221 (1981)

    Article  Google Scholar 

  35. Lu, J.; Liu, H.; Liu, R.; Xu, Z.; Sun, L.; Qu, J.: Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technol. 233(1), 146–154 (2013)

    Article  Google Scholar 

  36. Wang, W.; Zhang, H.; Zhang, L.; Wan, H.; Zheng, S.; Xu, Z.: Adsorptive removal of phosphate by magnetic \(\text{ Fe }_{3}\text{ O }_{4} @\text{ C }@\text{ ZrO }_{2}\). Colloid. Surface. A. 469, 100–106 (2015)

    Article  Google Scholar 

  37. Zhao, T.; Feng, T.: Application of Modified Chitosan Microspheres for Nitrate and Phosphate Adsorption from Aqueous Solution. RSC Adv. 6(93), 90878–90886 (2016)

    Article  Google Scholar 

  38. Pan, M.; Lin, X.; Xie, J.; Huang, X.: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites. ASC Adv. 7(8), 4492–4500 (2017)

    Google Scholar 

  39. Vasudevan, S.; Lakshmi, J.: The adsorption of phosphate by graphene from aqueous solution. RSC Adv. 2(12), 5234–5242 (2012)

    Article  Google Scholar 

  40. Han, C.; Wang, Z.; Yang, W.; Wu, Q.; Yang, H.; Xue, X.: Effects of pH on phosphorus removal capacities of basic oxygen furnace slag. Ecol. Eng. 89, 1–6 (2016)

    Article  Google Scholar 

  41. Hui, B.; Zhang, Y.; Ye, L.: Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal. Chem. Eng. J. 235, 207–214 (2014)

    Article  Google Scholar 

  42. Su, Y.; Cui, H.; Li, Q.; Gao, S.; Shang, J.K.: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res. 47(14), 5018–5026 (2013)

    Article  Google Scholar 

  43. Wang, Z.; Shen, D.; Shen, F.; Li, T.: Phosphate adsorption on lanthanum loaded biochar. Chemosphere 150, 1 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the College students’ innovative experimental project of China (201610699222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 202 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Yuan, L., Ji, Y. et al. Effective Removal of Phosphate from Aqueous by Graphene Oxide Decorated with \(\varvec{\upalpha }\text {-}\hbox {Fe}_{2}\hbox {O}_{3}\): Kinetic, Isotherm, Thermodynamic and Mechanism Study. Arab J Sci Eng 43, 3611–3620 (2018). https://doi.org/10.1007/s13369-018-3124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3124-3

Keywords

Navigation