Skip to main content

Advertisement

Log in

A Three-phase Nine-level Fault Tolerant Asymmetrical Inverter

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The reliability in inverters has gained a vast importance for their enhanced economic operation of the system. This paper proposes a three-phase reliable nine-level inverter with fault ride through capability. The proposed inverter synthesizes nine levels in the output with two asymmetrical voltage sources configured at a ratio of 1:3 under healthy operation. The inverter is analyzed for open circuit faults in switches. A reliability analysis is carried out for proposed inverter and compared with classical Cascaded-H Bridge. Combined control logic is implemented to control the inverter in accordance with the operating conditions. The circuit is operated with sinusoidal pulse width modulation under healthy condition, and it is made to operate with switching frequency optimal-based pulse width modulation (SFO-PWM) under fault cases, as it enhances fundamental DC value. The proposed inverter is simulated in MATLAB/SIMULINK, and the results are validated by an experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meynard, T.A.; Foch, H.; Thomas, T.; Courault, J.; Jakob, R.; Nahrstaedt, M.: Multicell converters: basic concepts and industry applications. IEEE Trans. Industr. Electron. 49(5), 955–964 (2002)

    Article  Google Scholar 

  2. Nabae, A.; Takahashi, I.; Akagi, H.: A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)

    Article  Google Scholar 

  3. Hammond, P.W.: A new approach to enhance power quality for medium voltage AC drives. IEEE Trans. Ind. Appl. 33(1), 202–208 (1997)

    Article  Google Scholar 

  4. Malinowski, M.; Gopakumar, K.; Rodriguez, J.; Perez, M.A.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2197–2206 (2010)

    Article  Google Scholar 

  5. Rodriguez, J.; Lai, Jih-Sheng; Peng, Fang Zheng: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Article  Google Scholar 

  6. Rodriguez, J.; Bernet, S.; Steimer, P.K.; Lizama, I.E.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219–2230 (2010)

    Article  Google Scholar 

  7. Babaei, E.; Alilu, S.; Laali, S.: A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans. Ind. Electron. 61(8), 3932–3939 (2014)

    Article  Google Scholar 

  8. Kangarlu, M.F.; Babaei, E.: Cross-switched multilevel inverter: an innovative topology. IET Power Electron. 6(4), 642–651 (2013)

    Article  Google Scholar 

  9. Karasani, R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.: A modified switched-diode topology for cascaded multilevel inverters. J. Power Electron. 16(5), 1706–1715 (2016)

    Article  Google Scholar 

  10. Gupta, K.K.; Jain, S.: Topology for multilevel inverters to attain maximum number of levels from given DC sources. IET Power Electron. 5(4), 435–446 (2012)

    Article  Google Scholar 

  11. Gupta, K.K.; Jain, S.: Comprehensive review of a recently proposed multilevel inverter. IET Power Electron. 7(3), 467–479 (2014)

    Article  Google Scholar 

  12. Karasani, R.R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.; Sabyasachi, S.: A three-phase hybrid cascaded modular multilevel inverter for renewable energy environment. IEEE Trans. Power Electron. 32(2), 1070–1087 (2017)

    Article  Google Scholar 

  13. Wei, S.; Wu, B.; Li, F.; Sun, X.: Control method for cascaded H-bridge multilevel inverter with faulty power cells. In: Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC, Miami Beach, FL, USA, pp. 261–267 (2003)

  14. Choi, U.M.; Lee, J.S.; Blaabjerg, F.; Lee, K.B.: Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter. IEEE Trans. Power Electron. 31(10), 7234–7247 (2016)

    Google Scholar 

  15. Ahmed, I.; Borghate, V.B.: Simplified space vector modulation technique for seven-level cascaded H-bridge inverter. IET Power Electron. 7(3), 604–613 (2014)

    Article  Google Scholar 

  16. Ahmed, I.; Borghate, V.B.; Matsa, A.; Meshram, P.M.; Suryawanshi, H.M.; Chaudhari, M.A.: Simplified space vector modulation techniques for multilevel inverters. IEEE Trans. Power Electron. 31(12), 8483–8499 (2016)

    Article  Google Scholar 

  17. Kim. S.M.; Lee. J.S.; Lee. K.B.: Fault-tolerant strategy using neutral-shift method for cascaded multilevel inverters based on level-shifted PWM. In: 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), pp. 1327–1332 (2015)

  18. Kim, S.M.; Lee, J.S.; Lee, K.B.: A modified level-shifted PWM strategy for fault-tolerant cascaded multilevel inverters with improved power distribution. IEEE Trans. Ind. Electron. 63(11), 7264–7274 (2016)

    Article  Google Scholar 

  19. Chen, A.; Hu, L.; Chen, L.; Deng, Y.; He, X.: A multilevel converter topology with fault-tolerant ability. IEEE Trans. Power Electron. 20(2), 405–415 (2005)

    Article  Google Scholar 

  20. Rodriguez, J.; Hammond, P.W.; Pontt, J.; Musalem, R.; Lezana, P.; Escobar, M.J.: Operation of a medium-voltage drive under faulty conditions. IEEE Trans. Ind. Electron. 52(4), 1080–1085 (2005)

    Article  Google Scholar 

  21. Parker, M.A.; Ran, L.; Finney, S.J.: Distributed control of a fault-tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing. IEEE Trans. Ind. Electron. 60(2), 509–522 (2013)

    Article  Google Scholar 

  22. Cordeiro. A.; Silva. J.F.; Pinto. S.F.; Santana. J.E.: Fault-tolerant design for a three-level neutral-point-clamped multilevel inverter topology. In: IEEE International Conference on Computer as a Tool (EUROCON), Lisbon, pp. 1–4 (2011)

  23. Madhukar, R.A.; Sivakumar, k: A fault-tolerant single-phase five-level inverter for grid-independent PV systems. IEEE Trans. Ind. Electron. 62(12), 7569–7577 (2015)

    Article  Google Scholar 

  24. Chitra, A.; Himavathi, S.: Reduced switch multilevel inverter for performance enhancement of induction motor drive with intelligent rotor resistance estimator. IET Power Electron. 8(12), 2444–2453 (2015)

    Article  Google Scholar 

  25. Chellammal. N.; Abirami. R.; Mohana, T.; Dash, S.S.: Switching frequency optimal PWM based three phase hybrid multilevel inverter. In: International Conference on Design and Manufacturing (IConDM2013), Chennai, India, pp. 302–311 (2013)

  26. Steinke, J.K.: ’Switching frequency optimal PWM control of a three-level inverter. IEEE Trans. Power Electron. 7(3), 487–496 (1992)

    Article  Google Scholar 

  27. Alavi, O.; Viki, A.H.; Shamlou, S.: A comparative reliability study of three fundamental multilevel inverters using two different approaches. J Electron MDPI 5, 18 (2016)

    Google Scholar 

  28. General specifications of Semiconductor Devices. MIL-S-19500 (1994)

  29. Haji-Esmaeili, M.M.; Naseri, M.; Khoun-Jahan, H.; Abapour, M.: Fault-tolerant structure for cascaded H-bridge multilevel inverter and reliability evaluation. IET Power Electron. 10(1), 59–70 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Maddugari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddugari, S.K., Borghate, V.B., Karasani, R.R. et al. A Three-phase Nine-level Fault Tolerant Asymmetrical Inverter. Arab J Sci Eng 44, 1779–1790 (2019). https://doi.org/10.1007/s13369-018-3097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3097-2

Keywords

Navigation