Skip to main content
Log in

Joint Global and Local Discriminant Embedding for Multi-fault Process Monitoring and Fault Classification

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new manifold learning-based scheme for multi-fault detection and classification, which utilizes local and nonlocal embedding method to build a statistic index for fault detection and subsequently develops a joint global and local discriminant embedding (GLDE) approach to discover the discriminant features of multiple faults for fault classification. The proposed GLDE approach can capture the global and local/nonlocal structure information of complicated data and obtain the concise discriminant information for classification. Compared with the conventional Fisher discriminant analysis method, GLDE has a strong discriminant power and provides better monitoring results for complex multi-fault Tennessee Eastman process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge, Z.; Song, Z.H.; Gao, F.: Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 52(l0), 3543–3562 (2013)

    Article  Google Scholar 

  2. Chiang, L.H.; Russell, E.; Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, Berlin (2001)

    Book  Google Scholar 

  3. AlGhazzawi, A.; Lennox, B.: Monitoring a complex refining process using multivariate statistics. Control Eng. Pract. 16, 294–307 (2008)

    Article  Google Scholar 

  4. Qin, S.J.: Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control 36(2), 220–234 (2012)

    Article  Google Scholar 

  5. Fan, Y.P.; Li, S.P.; Zhang, Y.W.: Monitoring of multimode processes based on quality-related common subspace separation. Math. Probl. Eng. 2014, 1–8 (2014)

    MathSciNet  Google Scholar 

  6. Nomikos, P.; MacGregor, J.F.: Monitoring of batch processes using multi-way principal component analysis. AIChE J. 40, 1361–1375 (1994)

    Article  Google Scholar 

  7. Kourti, T.; MacGregor, J.F.: Multivariate SPC methods for process and product monitoring. J. Qual. Technol. 28(4), 409–428 (1996)

    Article  Google Scholar 

  8. Choi, S.; Lee, I.B.: Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem. Eng. Sci. 59(24), 5897–5908 (2004)

    Article  Google Scholar 

  9. Jiang, X.D.; Zhao, H.T.; Jin, B.: Multimode process monitoring based on sparse principal component selection and Bayesian inference-based probability. Math. Probl. Eng. 2015, 1–12 (2015)

    Google Scholar 

  10. MacGregor, J.F.; Jaeckle, C.; Kiparissides, C.; Koutoudi, M.: Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 40(5), 826–838 (1994)

    Article  Google Scholar 

  11. Kruger, U.; Dimitriadis, G.: Diagnosis of process faults in chemical systems using a local partial least squares approach. AIChE J. 54(10), 2581–2596 (2008)

    Article  Google Scholar 

  12. Muradore, R.; Fiorini, P.: A PLS-based statistical approach for fault detection and isolation of robotic manipulators. IEEE Trans. Ind. Electron. 59(8), 3167–3175 (2012)

    Article  Google Scholar 

  13. Duda, R.O.; Hart, P.E.; Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  14. Chiang, L.; Kotanchek, M.; Kordon, A.: Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput. Chem. Eng. 28(8), 1389–1401 (2004)

    Article  Google Scholar 

  15. Yu, J.: Localized Fisher discriminant analysis based complex chemical process monitoring. AIChE J. 57(7), 1817–1828 (2011)

    Article  Google Scholar 

  16. He, X.F.; Niyogi, P.: Locality preserving projections. In: Proceedings of the Conference on Advances in Neural Information Processing Systems, Dec 8–13, Vancouver, Canada (2003)

  17. Tenenbaum, J.B.; Silva, V.; Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  18. Belkin, M.; Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Inf. Process. Syst. 1, 585–592 (2002)

    Google Scholar 

  19. Lu, C.H.; Xiao, S.Q.; Gu, X.F.: Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring. Korean J. Chem. Eng. 31(11), 1943–1953 (2014)

    Article  Google Scholar 

  20. Song, B.; Ma, Y.X.; Shi, H.B.: Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemom. Intell. Lab. Syst. 135, 17–30 (2014)

    Article  Google Scholar 

  21. Ma, Y.X.; Song, B.; Shi, H.B.; Yang, Y.W.: Fault detection via local and nonlocal embedding. Chem. Eng. Res. Des. 94, 538–548 (2015)

    Article  Google Scholar 

  22. Zhang, D.; He, J.Z.; Zhao, Y.; Luo, Z.L.; Du, M.H.: Global plus local: a complete framework for feature extraction and recognition. Pattern Recogn. 47(3), 1433–1442 (2014)

    Article  Google Scholar 

  23. Zhang, M.G.; Ge, Z.Q.; Song, Z.H.; Fu, R.: Global-local structure analysis model and its application for fault detection and identification. Ind. Eng. Chem. Res. 50(11), 6387–6848 (2011)

    Google Scholar 

  24. Yu, J.B.: Local and global principal component analysis for process monitoring. J. Process Control 22(7), 1358–1373 (2012)

    Article  Google Scholar 

  25. Luo, L.J.: Process monitoring with global-local preserving projections. Ind. Eng. Chem. Res. 53(18), 7696–7705 (2014)

    Article  Google Scholar 

  26. Luo, L.J.; Bao, S.Y.; Mao, J.F.; Tang, D.: Nonlinear process monitoring based on kernel global-local preserving projections. J. Process Control 38, 11–21 (2016)

    Article  Google Scholar 

  27. Qin, S.J.: Statistical process monitoring: basics and beyond. J. Chemom. 17(8–9), 480–502 (2003)

    Article  Google Scholar 

  28. Martin, E.B.; Morris, A.J.: Non-parametric confidence bounds for process performance monitoring charts. J. Process Control 6(6), 349–358 (1996)

    Article  Google Scholar 

  29. Downs, J.J.; Vogel, E.F.: Plant-wide industrial process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)

    Article  Google Scholar 

  30. Ricker, N.L.: Decentralized control of the Tennessee Eastman challenge process. J. Process Control 6(4), 205–221 (1996)

    Article  Google Scholar 

  31. Ricker, N.L.: Optimal steady-state operation of the Tennessee Eastman challenge process. Comput. Chem. Eng. 19(9), 949–959 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhong Lu.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

The work is supported by Research Fund of Nantong (MS12016036) and University Research Fund of Jiangsu Province (17KJB530008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Wang, J. Joint Global and Local Discriminant Embedding for Multi-fault Process Monitoring and Fault Classification. Arab J Sci Eng 43, 5859–5869 (2018). https://doi.org/10.1007/s13369-018-3072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3072-y

Keywords

Navigation