Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5905–5917 | Cite as

Hydrodynamics and Bubble Size Distribution in a Stirred Reactor

  • Malik Senouci-BereksiEmail author
  • Fairouz Khalida Kies
  • Fatiha Bentahar
Research Article - Chemical Engineering


A study of the hydrodynamics of two-phase stirred tanks is presented. The hydrodynamics in large-scale reactors is shown to be mainly a function of the superficial gas velocity and the stirring in the system. Six configurations for the stirrer have been tested: two single-stage and four two-stage configurations. The three hydrodynamic regimes (short circuit, load and flood) were observed for these configurations. The results show that the gas holdup, measured using the difference in level between aerated and non-aerated states, achieves a maximum value for the mixed two-stage combination. For this configuration, a study of the residence time distribution was carried out by employing the tracer (pulse injection) method, thus allowing the determination of the dead volume and the modeling of the flow in the reactor, corresponding to a perfectly mixed reactor. In stirred tank reactors, the study of the bubble size distribution has a great importance on the flow dynamics, the dimensions of bubbles are measured photographically; this investigation shows the presence of fine bubbles (d < 10 mm) with the experimental bubble size distribution curves exhibiting classical log-normal function traits within ± 3%. The characterization of the hydrodynamics and the flow regimes in the stirred reactor permits to optimize the operating parameters (stirrer type and configuration, stirring speed, gas velocity) within the reactor in order to treat the water contaminated by persistent pollutants.


Gas holdup RTD Bubble size distribution Interfacial area Stirred tank Wastewater treatment 




Interfacial area (\(\hbox {m}^{2}\,\hbox {m}^{-3}\))


Nozzle sparger diameter (mm)


Bubble diameter (mm)


Sauter mean diameter (mm)


Reactor diameter (mm)


Residence time distribution function


Number density (%)


Aerated state level (mm)


Non-aerated state level (mm)


Number of bubbles of diameter \(d_{\mathrm{i}}\)


Stirring speed (rpm)


Number of perfectly mixed reactors


Mean residence time (s)


Time (s)


Gas velocity (\(\hbox {m s}^{-1}\))


Reactor’s volume (\(\hbox {m}^{3}\))


Accessible volume (\(\hbox {m}^{3}\))


Dead volume (\(\hbox {m}^{3}\))

Greek letters

\(\varepsilon _{\mathrm{g}}\)

Gas holdup (%)

\(\theta \)

Reduced time

\(\mu _{\mathrm{N}},\, \mu _{\mathrm{LN}}\)

Normal and log-normal mean deviation, respectively

\(\sigma _{\mathrm{N}},\,\sigma _{\mathrm{LN}}\)

Normal standard deviation and log-normal standard deviation, respectively

\(\tau \)

Passage time (s)



Bubble size distribution

\(\hbox {Cum}_{\mathrm{N}},\,\,\hbox {Cum}_{\mathrm{LN}}\)

Cumulative normal and log-normal distribution, respectively


Flooding point


Loading point


Persistent organic pollutants


Residence time distribution


Six blades Rushton turbine


Six inclined blades turbine


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moilanen, P.; Laakkonen, M.; Aittamaa, J.: Modeling aerated fermenters with computational fluid dynamics. Ind. Eng. Chem. Res. 45, 8656–8663 (2006)CrossRefGoogle Scholar
  2. 2.
    Nauha, E.K.; Visuri, O.; Alopaeus, V.: A new simple approach for the scale-up of aerated stirred tanks. Chem. Eng. Res. Des. 95, 150–161 (2015)CrossRefGoogle Scholar
  3. 3.
    Middleton, J.C.; Smith, J.M.: Gas–Liquid Mixing in Turbulent Systems, Handbook of Industrial Mixing: Science and Practice, pp. 599–604. Wiley, Hoboken (2004)Google Scholar
  4. 4.
    Besagni, G.; Inzoli, F.: Bubble size distributions and shapes in annular gap bubble column. Exp. Therm. Fluid Sci. 74, 27–48 (2015)CrossRefGoogle Scholar
  5. 5.
    Kantarci, N.; Borak, F.; Ulgen, K.O.: Bubble column reactors. Process Biochem. 40, 2263–2283 (2005)CrossRefGoogle Scholar
  6. 6.
    Calderbank, P.H.; Rennie, J.: The physical properties of foams and froths formed on sieve-plates. Trans. Inst. Chem. Eng. 40, 3 (1962)Google Scholar
  7. 7.
    Euzen, J.P.; Trambouze, P.; Wauquier, J.P.: Scale-up Methodology for Chemical Processes, p. 254. Ed Technip, Paris (1993). (ISBN: 2-7108-0646-0)Google Scholar
  8. 8.
    De Wall, K.J.A.; Okeson, J.C.: The oxidation of aqueous sodium sulphite solution. Chem. Eng. Sci. 21, 559–563 (1966)CrossRefGoogle Scholar
  9. 9.
    Linek, V.; Mayrhoferova, J.: The kinetics of oxidation of aqueous sodium sulphite solution. Chem. Eng. Sci. 25, 787–800 (1970)CrossRefGoogle Scholar
  10. 10.
    Kies, F.K.; Benadda, B.; Otterbein, M.: Hydrodynamics, mass transfer and gas scrubbing in a co-current droplet column operating at high gas velocities. Chem. Eng. Technol. 29(10), 1205–1215 (2006)CrossRefGoogle Scholar
  11. 11.
    Colella, D.; Vinci, D.; Bagatin, R.; Masi, M.; Bakr, E.A.: A study on coalescence and breakage mechanisms in three different bubble columns. Chem. Eng. Sci. 54, 4767–4777 (1999)CrossRefGoogle Scholar
  12. 12.
    Bordel, S.; Mato, R.; Villaverde, S.: Modeling of the evolution with length of bubble size distributions in bubble columns. Chem. Eng. Sci. 61, 3663–3673 (2006)CrossRefGoogle Scholar
  13. 13.
    Fadavi, A.; Chisti, Y.; Chriastel, L.: Bubble size in a forced circulation loop reactor. Chem. Technol. Biotechnol. 83, 105–108 (2008)CrossRefGoogle Scholar
  14. 14.
    Rodrigues, R.T.; Rubio, J.: New basis for measuring the size distribution of bubbles. Miner. Eng. 16, 757–765 (2003)CrossRefGoogle Scholar
  15. 15.
    Xu, C.; Shepard, T.: Digital image processing algorithm for determination and measurement of in-focus spherical bubbles, In: ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 12th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers. pp. V01BT22A002–V001BT022A002 (2014)Google Scholar
  16. 16.
    Guet, S.; Luther, S.; Ooms, G.: Bubble shape and orientation determination with a four-point optical fiber probe. Exp. Therm. Fluid. Sci. 29, 803–812 (2005)CrossRefGoogle Scholar
  17. 17.
    Essadki, H.; Nikov, I.; Delmas, H.: Electrochemical probe for bubble size prediction in a bubble column. Exp. Therm. Fluid. Sci. 14, 243–250 (1997)CrossRefGoogle Scholar
  18. 18.
    Winkel, E.; Ceccio, S.; Dowling, D.; Perlin, M.: Bubble size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions. Exp. Fluids. 37, 802–810 (2004)CrossRefGoogle Scholar
  19. 19.
    Shepard, T.; Ruud, E.; Kinane, H.: Wall shear effect on bubble formation in turbulent flows. In: ASME Fluids Engineering Division Summer Meeting, Nevada, USA, July 7–11, American Society of Mechanical Engineers, pp. V01CT17A010-V001CT017A010 (2013)Google Scholar
  20. 20.
    Bouaifi, M.; Hebrard, G.; Bastoul, D.; Roustan, M.: A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chem. Eng. Proc. Process Intensif. 40(2), 97–111 (2001)CrossRefGoogle Scholar
  21. 21.
    Shepard, T.G.: Bubble size effect on effervescent atomization. Thesis: University of Minnesota, p. 149 (2011)Google Scholar
  22. 22.
    Lau, Y.M.; Sujatha, K.T.; Gaeini, M.; Deen, N.G.; Kuipers, J.A.M.: Experimental study of the bubble size distribution in a pseudo-2D bubble column. Chem. Eng. Sci. 98, 203–211 (2013)CrossRefGoogle Scholar
  23. 23.
    Holland, F.A.; Chapman, F.S.: Liquid Mixing and Processing in Stirred Tanks, p. 319. Reinhold Publishing Corporation, New York (1966)Google Scholar
  24. 24.
    Danckwerts, P.V.: Continuous flow systems: distribution of residence times. Chem. Eng. Sci. 2, 1–13 (1953)CrossRefGoogle Scholar
  25. 25.
    Garcia Maldonado, J.G.; Bastoul, D.; Baig, S.; Roustan, M.; Hébrard, G.: Effect of solid characteristics on hydrodynamic and mass transfer in a fixed bed reactor operating in co-current gas–liquid up flow. Chem. Eng. Proc. 47, 1190–1200 (2008)CrossRefGoogle Scholar
  26. 26.
    Shah, Y.T.; Kelkar, B.G.; Godbole, S.P.; Deckwer, W.D.: Design parameters estimations for bubble column reactors. AIChE J. 28, 353–379 (1982)CrossRefGoogle Scholar
  27. 27.
    Vasconcelos, J.M.T.; Rodrigues, J.M.L.; Orvalho, S.C.P.; Alves, S.S.; Mendes, R.L.; Reis, A.: Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors. Chem. Eng. Sci. 58, 1431–1440 (2003)CrossRefGoogle Scholar
  28. 28.
    Clark, A.W.; Vermeulen, T.: Incipient vortex formation in baffled agitated vessels. AIChE J. 10, 420–422 (1964)CrossRefGoogle Scholar
  29. 29.
    Bouaifi, M.; Roustan, M.: Bubble size and mass transfer coefficients in dual-impeller agitated reactors. Can. J. Chem. Eng. 76, 390–397 (1998)CrossRefGoogle Scholar
  30. 30.
    Harris, A.T.; Davidson, J.F.; Thorpe, R.B.: The Influence of the riser exit on the particle residence time distribution in a circulating fluidized bed riser. Chem. Eng. Sci. 58(16), 3669–3680 (2003)CrossRefGoogle Scholar
  31. 31.
    De Swart, J.W.A.; Van Vliet, R.E.; Krishna, R.: Size, structure and dynamics of “large” bubbles in a two-dimensional slurry bubble column. Chem. Eng. Sci. 51, 4619 (1996)CrossRefGoogle Scholar
  32. 32.
    Lee, D.J.; Luo, X.; Fan, L.S.: Gas disengagement technique in a slurry bubble column operated in the coalesced bubble regime. Chem. Eng. Sci. 54, 2227–2236 (1999)CrossRefGoogle Scholar
  33. 33.
    Inga, J.R.; Morsi, B.I.: Effect of operating variables on the gas hold-up in a large-scale slurry bubble column reactor operating with an organic liquid mixture. Ind. Eng. Chem. Res. 38, 928–937 (1999)CrossRefGoogle Scholar
  34. 34.
    Heindel, T.J.: Bubble size in a co-current fiber slurry. Ind. Eng. Chem. Res. 41, 632–641 (2002)CrossRefGoogle Scholar
  35. 35.
    Wongsuchoto, P.; Charinpanitkul, T.; Pavasant, P.: Bubble size distribution and gas–liquid mass transfer in airlift contactors. Chem. Eng. J. 92, 81–90 (2003)CrossRefGoogle Scholar
  36. 36.
    Luo, X.; Lee, D.J.; Lau, R.; Yang, G.; Fan, L.S.: Maximum stable bubble size and gas hold-up in high-pressure slurry bubble columns. AIChE J. 45, 665–680 (1997)CrossRefGoogle Scholar
  37. 37.
    Luewisutthichat, W.; Tsutsumi, A.; Yoshida, K.: Bubble characteristics in multi-phase flow systems: bubble sizes and size distributions. J. Chem. Eng. Jpn. 30, 461–466 (1997)CrossRefGoogle Scholar
  38. 38.
    Heindel, T.J.; Garner, A.E.: The effect of fiber consistency on bubble size. Nord. Pulp Pap. Res. J. 14, 171 (1999)CrossRefGoogle Scholar
  39. 39.
    Rodríguez-Rodríguez, J.; Martínez-Bazán, C.; Montañes, J.L.: A novel particle tracking and break-up detection algorithm: application to the turbulent breakup of bubbles. Meas. Sci. Technol. 14, 1328–1340 (2003)CrossRefGoogle Scholar
  40. 40.
    Lecuona, A.; Sosa, P.A.; Rodríguez, P.A.; Zequeira, R.I.: Volumetric characterization of dispersed two-phase flows by digital image analysis. Meas. Sci. Technol. 11, 1152–1161 (2000)CrossRefGoogle Scholar
  41. 41.
    Ohkawa, A.; Kawai, Y.; Kusabiraki, D.; Sakai, N.; Endoh, K.: Bubble size, interfacial area and volumetric liquid-phase mass transfer coefficient in downflow bubble columns with gas entrainment by a liquid jet. J. Chem. Eng. Jap. 20(1), 99–101 (1987)CrossRefGoogle Scholar
  42. 42.
    Charpentier, J.C.: Mass transfer rates in gas–liquid absorbers and reactors. Adv. Chem. Eng. 11, 1 (1981)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Laboratoire des Phénomènes de Transfert (LPDT), Faculté de Génie Mécanique et de Génie des ProcédésUniversité des Sciences et de la Technologie Houari Boumediène (USTHB)Bab EzzouarAlgeria
  2. 2.Laboratoire de Valorisation des Energies Fossiles (LAVALEF), Département Génie ChimiqueEcole Nationale Polytechnique (ENP)AlgiersAlgeria

Personalised recommendations