Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5919–5927 | Cite as

Potential of Chambersite Tailing as Raw Material for the Preparation of Glass Ceramic: Investigation on Crystallization Behavior and Crystal Structure

  • Qingguo Tang
  • Xiaozhan Mu
  • Xinhui DuanEmail author
  • C. Srinivasakannan
  • Jingsheng Liang
  • Debao Ding
  • Zhigang Zhao
Research Article - Chemical Engineering


The feasibility of preparing glass ceramic from chambersite gravity tailings was explored. The crystallization parameters and state of glass ceramic were analyzed by Johnson–Mehl–Avrami and Augis–Bennett equations. The effects of sintering temperature and crystallization duration on bending strength and water absorption of glass ceramic were investigated, while the phase composition, crystal structure, lattice constants and surface topography were characterized. The results indicate the crystallization behavior of chambersite tailings glass ceramic is mainly body crystallization with clinopyroxene as a primary crystalline phase, the activation energy for crystallization (E) is 315.27 kJ/mol, the kinetics parameter for crystallization (k) is \(7.98\times 10^{14}\), and the main phase lattice constants of clinopyroxene were \(a=0.97392\) nm, \(b=0.88521\) nm, \(c=0.52748\) nm, \(\beta =107.062{^{\circ }}\). At sintering temperature of 890 \(^{\circ }\)C, pyroxene crystal with tetragonal column structure is formed, the diameter of the crystal is about 0.05–0.5 \(\upmu \)m, while the crystallinity is more than 75%; the bending strength of the glass ceramic increases with the decrease in material particle size; at the \(\hbox {D}_{90}\) of 5.71 \(\upmu \)m and crystallization duration of 150 min, the bending strength of glass ceramic reaches the maximum of 128.3 MPa and the water absorption is between 0.06 and 0.02%.


Chambersite Gravity tailings Glass ceramic Crystallization behavior Crystal structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The research was supported by Geologic Survey Bureau of China through project “Comprehensive Utilization and Practicability Research of Mineral Resources” (12120114077401), Natural Science Foundation of China (51641403/E0418), Natural Science Foundation of Hebei Province (E2013202142) and Natural Science Foundation of Hebei Province (E2015202312), China.


  1. 1.
    Zhou, J.; Zheng, J.B.; Li, W.D.: Synthesis of slag glass-ceramic by body crystallization. Glass Enamels 35, 7–11 (2008)Google Scholar
  2. 2.
    Xu, J.C.; Ma, H.W.; Yang, J.: Preparation of \(\beta \)-wollastonite glass ceramics from potash feldspat tailings. J. Chin. Ceram. Soc. 31, 179–183 (2003)Google Scholar
  3. 3.
    Chen, W.Q.; Gao, S.Y.; Liu, J.: Preparation and properties of glass-ceramics from gold tailings by melting method. J. Synth. Cryst. 43, 217–221 (2014)Google Scholar
  4. 4.
    Du, Y.S.; Li, B.W.; Zhang, X.F.: Influence of content and valence of iron on crystallization characteristics and properties of Baiyunebo tailing glass-ceramics. J. Synth. Cryst. 42, 2170–2176 (2013)Google Scholar
  5. 5.
    Cetin, S.; Marangoni, M.; Bernardo, E.: Lightweight glass-ceramic tiles from the sintering of mining tailings. Ceram. Int. 41, 5294–5300 (2015)CrossRefGoogle Scholar
  6. 6.
    Fan, D.L.; Yang, P.J.; Wang, R.: Characteristics and origin of the middle Proterozoic Dongshuichang chambersite deposit, Jixian, Tianjin, China. Ore Geol. Rev. 15, 15–29 (1999)CrossRefGoogle Scholar
  7. 7.
    Frost, R.L.; Lopez, A.; Scholz, R.: Vibrational spectroscopy of the borate mineral chambersite \({\text{ MnB }}_{7}{\text{ O }}_{13}\)Cl—implications for the molecular structure. Spectrochim. Acta A 120, 270–273 (2004)CrossRefGoogle Scholar
  8. 8.
    Gong, L.L.; Cao, L.; Jia, C.C.: Friction properties of chambersite. J. Univ. Sci. Technol. B 36, 354–358 (2014)Google Scholar
  9. 9.
    Liang, D.; Cao, L.; Jia, C.C.: Preparation and electromagnetic properties of chambersite nano-powders. P/M Technol. 33, 111–115 (2015)Google Scholar
  10. 10.
    Maiti, P.K.; Mallik, A.; Basumajumdar, A.; Guha, P.: Influence of barium oxide on the crystallization, microstructure and mechanical properties of potassium fiuorophlogopite glass-ceramics. Ceram. Int. 38, 251–258 (2012)CrossRefGoogle Scholar
  11. 11.
    Kržmanc, M.M.; Došler, U.; Suvorov, D.: Effect of a \(\text{ TiO }_{2}\) nucleating agent on the nucleation and crystallization behavior of \({\text{ MgO }}{-}{\text{ B }}_{2}\text{ O }_{3}{-}\text{ SiO }_{2}\) glass. J. Am. Ceram. Soc. 95, 1920–1926 (2012)CrossRefGoogle Scholar
  12. 12.
    Mohaghegh, E.; Nemati, A.; Eftekhari, Yekta B.: Influence of \(\text{ Fe }_{2}\text{ O }_{3}\) on non-isothermal crystallization kinetics and microstructure of lithium titanium phosphate glass-ceramics. J. Non Cryst. Solids 408, 130–136 (2015)CrossRefGoogle Scholar
  13. 13.
    Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)CrossRefGoogle Scholar
  14. 14.
    Romeo, M.; Martín-Márquez, J.; Rincón, J.M.: Kinetic of mullite fornnation from a porcelain stoneware body for tiles production. J. Eur. Ceram. Soc. 26, 1647–1652 (2006)CrossRefGoogle Scholar
  15. 15.
    Augis, J.A.; Bennett, J.E.: Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. Calorim. 13, 283–292 (1978)CrossRefGoogle Scholar
  16. 16.
    Wen, L.: Infrared Spectroscopy of Minerals. Chongqing University Press, Chongqing (1989) (in Chinese) Google Scholar
  17. 17.
    Yan, W.C.; Yuan, P.; Tan, D.Y.: Infrared spectroscopic of Mg-rich and Mg-poor palygorskite. J. Chin. Ceram. Soc. 41, 89–95 (2013)Google Scholar
  18. 18.
    Peng, W.S.: Atlas of Mineral Infrared Spectra. Science Press, Beijing (1982) (in Chinese) Google Scholar
  19. 19.
    Lu, Y.F.; Du, Y.G.; Xiao, J.Y.: Quanttattive analysis of crystal phases in glass-ceramics by X-ray diffraction method. J. Chin. Ceram. Soc. 33, 1488–1493 (2005)Google Scholar
  20. 20.
    Yao, S.Y.; Wang, Z.F.; Han, Y.: Preparation and structure analysis of diopside glass-ceramic from coal fly-ash. Trans. Mater. Heat Treat. 34, 22–26 (2013)Google Scholar
  21. 21.
    Mu, X.Z.; Tang, Q.G.; Liu, Y.L.: Preparation of low temperature sintering glass ceramics from chambersite ore tailings. J. Chin. Ceram. Soc. 44, 323–328 (2016)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Qingguo Tang
    • 1
    • 2
  • Xiaozhan Mu
    • 3
  • Xinhui Duan
    • 1
    • 2
    Email author
  • C. Srinivasakannan
    • 4
  • Jingsheng Liang
    • 1
    • 2
  • Debao Ding
    • 1
    • 2
  • Zhigang Zhao
    • 1
    • 2
  1. 1.Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology)Ministry of EducationTianjinChina
  2. 2.Institute of Power Source and Ecomaterials ScienceHebei University of TechnologyTianjinChina
  3. 3.CAS Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  4. 4.Chemical Engineering ProgramThe Petroleum InstituteAbu DhabiUnited Arab Emirates

Personalised recommendations