Skip to main content
Log in

Ripeness Classification of Bananas Using an Artificial Neural Network

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The quality of fresh banana fruit is a main concern for consumers and fruit industrial companies. The effectiveness and fast classification of banana’s maturity stage are the most decisive factors in determining its quality. It is necessary to design and implement image processing tools for correct ripening stage classification of the different fresh incoming banana bunches. Ripeness in banana fruit generally affects the eating quality and the market price of the fruit. In this paper, an automatic computer vision system is proposed to identify the ripening stages of bananas. First, a four-class homemade database is prepared. Second, an artificial neural network-based framework which uses color, development of brown spots, and Tamura statistical texture features is employed to classify and grade banana fruit ripening stage. Results and the performance of the proposed system are compared with various techniques such as the SVM, the naive Bayes, the KNN, the decision tree, and discriminant analysis classifiers. Results reveal that the proposed system has the highest overall recognition rate, which is 97.75%, among other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mendoza, F.; Dejmek, P.; Aguilera, J.M.: Predicting ripening stages of bananas (Musa cavendish) by computer vision. Acta Hortic. 682(183), 1363–1370 (2005)

    Article  Google Scholar 

  2. Mendoza, F.; Aguilera, J.M.: Application of image analysis for classification of ripening bananas. J. Food Sci. 69(9), 471–477 (2004)

    Article  Google Scholar 

  3. Prabha, D.S.; Kumar, J.S.: Assessment of banana fruit maturity by image processing technique. J. Food Sci. Technol. 52(3), 1316–1327 (2015). https://doi.org/10.1007/s13197-013-1188-3

    Article  Google Scholar 

  4. AlZubi, S.; Islam, N.; Abbod, M.: Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. J. Biomed. Imaging (2011). https://doi.org/10.1155/2011/136034

    Google Scholar 

  5. Schelkens, P.; Munteanu, A.; Barbarien, J.; Galca, M.; Giro-Nieto, X.; Cornelis, J.: Wavelet coding of volumetric medical data sets. IEEE Trans. Med. Imaging 22(3), 441–458 (2003)

    Article  Google Scholar 

  6. Alzu’bi, S.; Amira, A.: 3D medical volume segmentation using hybrid multiresolution statistical approaches. Adv. Artif. Intell. (2010). https://doi.org/10.1155/2010/520427

    Google Scholar 

  7. AlZubi, S.; Sharif, M.S.; Abbod, M.: Efficient implementation and evaluation of wavelet packet for 3D medical image segmentation. In: IEEE International Symposium on Medical Measurements and Applications (2011). https://doi.org/10.1109/MeMeA.2011.5966667

  8. AlZubi, S.; Jararweh, Y.; Shatnawi, R.: Medical volume segmentation using 3D multiresolution analysis. In: International Conference on Innovations in Information Technology (IIT) (2012)

  9. Nashat, A.A.; Hussain Hassan, N.M.: Automatic segmentation and classification of olive fruits batches based on discrete wavelet transform and visual perceptual texture features. Int. J. Wavelets Multiresolut. Inf. Process. 16(1), 1850003 (2018). https://doi.org/10.1142/S0219691318500030

    Article  MathSciNet  MATH  Google Scholar 

  10. Kumar, H.C.S.; Raja, K.B.; Venugopal, K.R.; Patnaik, L.M.: Automatic image segmentation using wavelets. Int. J. Comput. Sci. Netw. Secur. 9(2), 305–313 (2009)

  11. Khoje, S.A.; Bodhe, S.K.; Adsul, A.: Automated skin defect identification system for fruit grading based on discrete curvelet transform. Int. J. Eng. Technol. 5(4), 3251–3256 (2013)

    Google Scholar 

  12. Hussain Hassan, N.M.; Nashat, A.A.: New effective techniques for automatic detection and classification of external olive fruits defects based on image processing techniques. Multidimens. Syst. Signal Process. (2018). https://doi.org/10.1007/s11045-018-0573-5

    MATH  Google Scholar 

  13. Al-Zu’bi, S.; Al-Ayyoub, M.; Jararweh, Y.; Shehab, M.A.: Enhanced 3D segmentation techniques for reconstructed 3D medical volumes: robust and accurate intelligent system. Proc. Comput. Sci. 113, 531–538 (2017)

    Article  Google Scholar 

  14. Déniz, O.; Castrillon, M.; Hernández, M.: Face recognition using independent component analysis and support vector machines. Pattern Recogn. Lett. 24(13), 2153–2157 (2003)

    Article  MATH  Google Scholar 

  15. Zhao, G.; Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  16. Nashat, A.A.: Facial expression recognition using best tree RD-LGP encoded features and HMM. Int. J. Wavelets Multiresolut. Inf. Process. 16(6), 1850047 (2018). https://doi.org/10.1142/S0219691318500479

    Article  MathSciNet  Google Scholar 

  17. Juncai, H.; Yaohua, H.; Lixia, H.; Kangquan, G.; Satake, T.: Classification of ripening stages of bananas based on support vector machine. Int. J. Agric. Biol. Eng. 8(6), 99–103 (2015)

    Google Scholar 

  18. Zhang, Y.; Lian, J.; Fan, M.; Zheng, Y.: Deep indicator for fine-grained classification of banana’s ripening stages. EURASIP J. Image Video Process. 46, 1–10 (2018). https://doi.org/10.1186/s13640-018-0284-8

    Google Scholar 

  19. Olaniyi, E.O.; Adekunle, A.A.; Odekuoye, T.; Khashman, A.: Automatic system for grading banana using GLCM texture feature extraction and neural network arbitrations. J. Food Process Eng. 40(4), 1–10 (2017)

    Google Scholar 

  20. Olaniyi, E.O.; Oyedotun, O.K.; Adnan, K.: Intelligent grading system for banana fruit using neural network arbitration. J. Food Process Eng. 40, 1–9 (2017). https://doi.org/10.1111/jfpe.12335

    Google Scholar 

  21. Espinoza, E.M.L.; Duran, M.T.; Morales, R.A.L.; Yepez, E.C.; Robles, N.S.: Determination of the ripeness state of guavas using an artificial neural network. Res. Comput. Sci. 121, 105–111 (2016)

    Google Scholar 

  22. Sabzi, S.; Gilandeh, Y.A.; Mateos, G.G.: A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms. Inf. Process. Agric. 5, 162–172 (2018)

    Google Scholar 

  23. Adebayo, S.E.; Hashim, N.; Abdan, K.; Hanafi, M.; Mollazade, K.: Prediction of quality attributes and ripeness classification of bananas using optical properties. Sci. Hortic. 212, 171–182 (2016)

    Article  Google Scholar 

  24. Adebayo, S.A.; Hashim, N.; Abdan, K.; Hanafi, M.; Zude-Sasse, M.: Prediction of banana quality attributes and ripeness classification using artificial neural network. In: Acta Horticulturae, Proceedings of the III International Conference on Agricultural and Food Engineering, pp. 335–343 (2017). https://doi.org/10.17660/ActaHortic.2017.1152.45

  25. Bagri, N.; Johari, P.: A comparative study on feature extraction using texture and shape for content-based image retrieval. Int. J. Adv. Sci. Technol. 80, 41–52 (2015)

    Article  Google Scholar 

  26. Kebapci, H.; Yanikoglu, B.; Unal, G.: Plant image retrieval using color, shape, and texture features. Comput. J. 54(9), 1475–1490 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Nashat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazen, F.M.A., Nashat, A.A. Ripeness Classification of Bananas Using an Artificial Neural Network. Arab J Sci Eng 44, 6901–6910 (2019). https://doi.org/10.1007/s13369-018-03695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-03695-5

Keywords

Navigation