Effect of Oil Palm Fiber Content on the Physical and Mechanical Properties and Microstructure of High-Calcium Fly Ash Geopolymer Paste

  • Wunchock Kroehong
  • Chai Jaturapitakkul
  • Thanyawat Pothisiri
  • Prinya Chindaprasirt
Research Article - Civil Engineering
  • 23 Downloads

Abstract

This paper investigates the effect of oil palm fiber content on the physical and mechanical properties and microstructure of high-calcium fly ash geopolymer paste. The oil palm fiber was added to the mixture at 0, 1, 2, and 3% by weight of fly ash. Sodium hydroxide (NaOH) and sodium silicate \((\hbox {Na}_{2}\hbox {SiO}_{3})\) were used as liquid alkaline activators. The bulk density, compressive strength, flexural strength, pore size distribution, scanning electron microscopy, and thermal conductivity of geopolymer paste were determined. Test results showed that the bulk density of high-calcium geopolymer paste containing oil palm fibers decreased with increasing fiber content. The increase oil palm fiber content decreased the compressive strength of geopolymer paste but enhanced the flexural strength and toughness and changed the failure behavior of geopolymer composite. In addition, the pore size and total porosity also increased with the increase in fiber content, while the thermal conductivity was reduced. The addition of oil palm fiber can improve the flexural strength and thermal conductivity of geopolymer paste and could thus be developed into a fiber-reinforced composite for construction purposes.

Keywords

Geopolymer Oil palm fiber Fly ash Flexural strength Pore size distribution Thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported under research funding from the Faculty of Engineering and Architecture, Uthenthawai Campus, Rajamangala University of Technology Tawan-ok, Thailand. Appreciation is also extended to the Thailand Research Fund (TRF) for financial support under the Grant No. DPG618002 and the TRF New Researcher Scholar, Grant No. TRG 5880064.

References

  1. 1.
    Kroehong, W.; Sinsiri, T.; Jaturapitakkul, C.; Chindaprasirt, P.: Effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Constr. Build. Mater. 25(11), 4095–104 (2011)CrossRefGoogle Scholar
  2. 2.
    Mikulčić, H.; Klemeš, J.J.; Vujanović, M.; Urbaniec, K.; Duić, N.: Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process. J. Clean. Produc. 136(Part B), 119–132 (2016)Google Scholar
  3. 3.
    Akashi, O.; Hanaoka, T.; Matsuoka, Y.; Kainuma, M.: A projection for global \(\text{ CO }_{2}\) emissions from the industrial sector through 2030 based on activity level and technology changes. Energy 36(4), 1855–1867 (2011)CrossRefGoogle Scholar
  4. 4.
    Siriruang, C.; Toochinda, P.; Julnipitawong, P.; Tangtermsirikul, S.: \(\text{ CO }_{2}\) capture using fly ash from coal fired power plant and applications of \(\text{ CO }_{2}\)-captured fly ash as a mineral admixture for concrete. J. Environ. Manag. 170, 70–78 (2016)CrossRefGoogle Scholar
  5. 5.
    Kroehong, W.; Damrongwiriyanupap, N.; Sinsiri, T.; Jaturapitakkul, C.: The effect of palm oil fuel ash as a supplementary cementitious material on chloride penetration and microstructure of blended cement paste. Arab. J. Sci. Eng. 41(12), 4799–4808 (2016)CrossRefGoogle Scholar
  6. 6.
    Cheewaket, T.; Jaturapitakkul, C.; Chalee, W.: Long term performance of chloride binding capacity in fly ash concrete in a marine environment. Constr. Build. Mater. 24(8), 1352–1357 (2010)CrossRefGoogle Scholar
  7. 7.
    Chatveera, B.; Lertwattanaruk, P.: Evaluation of sulfate resistance of cement mortars containing black rice husk ash. J. Environ. Manag. 90(3), 1435–1441 (2009)CrossRefGoogle Scholar
  8. 8.
    Phoo-ngernkham, T.; Chindaprasirt, P.; Sata, V.; Hanjitsuwan, S.; Hatanaka, S.: The effect of adding \(\text{ nano }-\text{ SiO }_{2}\) and \(\text{ nano-Al }_{2}\text{ O }_{3}\) on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater. Des. 55, 58–65 (2014)CrossRefGoogle Scholar
  9. 9.
    Davidovits, J.: Chemistry of geopolymeric systems. Terminology. In: Proceedings of the Geopolymer 99 Conference, Saint-Quentin, pp. 9–40 (1999)Google Scholar
  10. 10.
    Rattanasak, U.; Chindaprasirt, P.: Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22(12), 1073–1078 (2009)CrossRefGoogle Scholar
  11. 11.
    Fernández-Jiménez, A.; Palomo, J.G.; Puertas, F.: Alkali-activated slag mortars: mechanical strength behaviour. Cem. Concr. Res. 29(8), 1313–1321 (1991)CrossRefGoogle Scholar
  12. 12.
    Palomo, A.; Grutzeck, M.W.; Blanco, M.T.: Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res. 29(8), 1323–1329 (1999)CrossRefGoogle Scholar
  13. 13.
    Swanepoel, J.C.; Strydom, C.A.: Utilisation of fly ash in a geopolymeric material. Appl. Geochem. 17(8), 1143–1148 (2002)CrossRefGoogle Scholar
  14. 14.
    Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U.: Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 29(2), 539–543 (2009)CrossRefGoogle Scholar
  15. 15.
    Phoo-ngernkham, T.; Hanjitsuwan, S.; Suksiripattanapong, C.; Thumrongvut, J.; Suebsuk, J.; Sookasem, S.: Flexural strength of notched concrete beam filled with alkali-activated binders under different types of alkali solutions. Constr. Build. Mater. 127, 673–678 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F.: Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 109, 17–24 (2016)CrossRefGoogle Scholar
  17. 17.
    Chindaprasirt, P.; Chalee, W.: Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr. Build. Mater. 63, 303–310 (2014)CrossRefGoogle Scholar
  18. 18.
    Guades, E.J.: Experimental investigation of the compressive and tensile strengths of geopolymer mortar: the effect of sand/fly ash (S/FA) ratio. Constr. Build. Mater. 127, 484–493 (2016)CrossRefGoogle Scholar
  19. 19.
    Assaedi, H.; Shaikh, F.U.A.; Low, I.M.: Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr. Build. Mater. 123, 541–552 (2016)CrossRefGoogle Scholar
  20. 20.
    Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Cornelis Metselaar, H.S.; Jumaat, M.Z.: Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 122, 73–81 (2016)CrossRefGoogle Scholar
  21. 21.
    Wei, J.; Meyer, C.: Sisal fiber-reinforced cement composite with Portland cement substitution by a combination of metakaolin and nanoclay. J. Mater. Sci. 49(21), 7604–7619 (2014)CrossRefGoogle Scholar
  22. 22.
    Chen, R.; Ahmari, S.; Zhang, L.: Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J. Mater. Sci. 49(6), 2548–2558 (2014)CrossRefGoogle Scholar
  23. 23.
    Sá Ribeiro, R.A.; Sá Ribeiro, M.G.; Sankar, K.; Kriven, W.M.: Geopolymer-bamboo composite—a novel sustainable construction material. Constr. Build. Mater. 123, 501–507 (2016)CrossRefGoogle Scholar
  24. 24.
    Raut, A.N.; Gomez, C.P.: Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Constr. Build. Mater. 126, 476–483 (2016)CrossRefGoogle Scholar
  25. 25.
    Abd. Aziz, F.N.A.; Bida, S.M.; Nasir, N.A.M.; Jaafar, M.S.: Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb. Constr. Build. Mater. 73, 544–550 (2014)CrossRefGoogle Scholar
  26. 26.
    Alomayri, T.; Shaikh, F.U.A.; Low, I.M.: Characterisation of cotton fibre-reinforced geopolymer composites. Compos. B: Eng. 50, 1–6 (2013)CrossRefGoogle Scholar
  27. 27.
    Bledzki, A.K.; Gassan, J.: Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24, 221–274 (1999)CrossRefGoogle Scholar
  28. 28.
    Rong, M.Z.; Zhang, M.Q.; Liu, Y.; Yang, G.C.; Zeng, H.M.: The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 61(10), 1437–1447 (2001)CrossRefGoogle Scholar
  29. 29.
    Lertwattanaruk, P.; Suntijitto, A.: Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Constr. Build. Mater. 94, 664–669 (2015)CrossRefGoogle Scholar
  30. 30.
    Alonge, O.R.; Ramli, M.B.; Lawalson, T.J.: Properties of hybrid cementitious composite with metakaolin, nanosilica and epoxy. Constr. Build. Mater. 155, 740–750 (2017)CrossRefGoogle Scholar
  31. 31.
    ASTM C618: A standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. In: Annual Book of ASTM Standards, 04.02, pp. 310–313 (2001)Google Scholar
  32. 32.
    Phoo-ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P.: Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Constr. Build. Mater. 91, 1–8 (2015)CrossRefGoogle Scholar
  33. 33.
    ASTM D882: Standard test method for tensile properties of thin plastic sheeting. In: Annual Book of ASTM Standards, pp. 1–10 (2002)Google Scholar
  34. 34.
    ASTM C20: Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. In: Annual Book of ASTM Standards, 15.01 (2005)Google Scholar
  35. 35.
    ASTMC109: Standard test method for compressive strength of hydraulic 557 cement mortars (using 2-in. or [50 mm] cube specimens). In: Annual Book of 558 ASTM Standards, 04.01, pp. 83–88 (2001)Google Scholar
  36. 36.
    ASTMC348: Standard test method for flexural strength of hydraulic-cement mortars. In: Annual Book of ASTM Standards, 04.01 (2002)Google Scholar
  37. 37.
    JSCE SF-4: Method of test for flexural strength and flexural toughness of fiber reinforced concrete Japan Society of Civil Engineering. Standard SF-4, pp. 58–66 (1984)Google Scholar
  38. 38.
    Kim, D.j.; Naaman, A.E.; El-Tawil, S.: Comparative flexural behavior of four fiber reinforced cementitious composites. Cem. Concr. Compos. 30(10), 917–928 (2008)Google Scholar
  39. 39.
    Washburn, E.W.: Note on method of determining the distribution of pore size in porous materials. Proc. Natl. Acad. Sci. 7(4), 115–116 (1921)CrossRefGoogle Scholar
  40. 40.
    ASTM C518: A. Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. In: Annual Book ASTM Standards, vol. 4(1), pp. 153–167 (2004)Google Scholar
  41. 41.
    Xie, X.; Zhou, Z.; Jiang, M.; Xu, X.; Wang, Z.; Hui, D.: Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. B Eng. 78, 153–161 (2015)CrossRefGoogle Scholar
  42. 42.
    Alomayri, T.; Shaikh, F.U.A.; Low, I.M.: Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites. Compos. B: Eng. 60, 36–42 (2014)CrossRefGoogle Scholar
  43. 43.
    Bentur, A.; Mindess, S.: Fiber Reinforced Cementitious Composite. Elsevier, New York (1990)Google Scholar
  44. 44.
    Masi, G.; Rickard, W.D.A.; Bignozzi, M.C.; van Riessen, A.: The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos. B: Eng. 76, 218–228 (2015)CrossRefGoogle Scholar
  45. 45.
    Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T.: Effect of fly ash fineness on microstructure of blended cement paste. Constr. Build. Mater. 21(7), 1534–1541 (2007)CrossRefGoogle Scholar
  46. 46.
    Mindress, S.; Young, J.F.: Concrete (1981)Google Scholar
  47. 47.
    Wongsa, A.; Boonserm, K.; Waisurasingha, C.; Sata, V.; Chindaprasirt, P.: Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J. Clean. Prod. 148, 49–59 (2017)CrossRefGoogle Scholar
  48. 48.
    Fongang, R.T.T.; Pemndje, J.; Lemougna, P.N.; Melo, U.C.; Nanseu, C.P.; Nait-Ali, B.: Cleaner production of the lightweight insulating composites: microstructure, pore network and thermal conductivity. Energy Build. 107, 113–22 (2015)CrossRefGoogle Scholar
  49. 49.
    Torkittikul, P.; Nochaiya, T.; Wongkeo, W.; Chaipanich, A.: Utilization of coal bottom ash to improve thermal insulation of construction material. J. Mater. Cycles Waste Manag. 19(1), 1–13 (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Wunchock Kroehong
    • 1
  • Chai Jaturapitakkul
    • 2
  • Thanyawat Pothisiri
    • 3
  • Prinya Chindaprasirt
    • 4
    • 5
  1. 1.Department of Civil Engineering, Faculty of Engineering and Architecture, Uthenthawai CampusRajamangala University of Technology Tawan-okBangkokThailand
  2. 2.Department of Civil Engineering, Faculty of EngineeringKing Mongkut’s University of Technology ThonburiBangkokThailand
  3. 3.Department of Civil Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  4. 4.Department of Civil Engineering, Sustainable Infrastructure Research and Development Center, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand
  5. 5.The Academy of ScienceThe Royal Society of ThailandDusit, BangkokThailand

Personalised recommendations